9,116 research outputs found

    Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: an ab-initio study

    Get PDF
    We characterize the electronic structure and elasticity of monolayer transition-metal dichalcogenides MX2 (M=Mo, W, Sn, Hf and X=S, Se, Te) with 2H and 1T structures using fully relativistic first principles calculations based on density functional theory. We focus on the role of strain on the band structure and band alignment across the series 2D materials. We find that strain has a significant effect on the band gap; a biaxial strain of 1% decreases the band gap in the 2H structures, by as a much 0.2 eV in MoS2 and WS2, while increasing it for the 1T materials. These results indicate that strain is a powerful avenue to modulate their properties; for example, strain enables the formation of, otherwise impossible, broken gap heterostructures within the 2H class. These calculations provide insight and quantitative information for the rational development of heterostructures based on these class of materials accounting for the effect of strain.Comment: 16 pages, 4 figures, 1 table, supplementary materia

    Shape evolution in Yttrium and Niobium neutron-rich isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M. The equal filling approximation is used to describe odd-A nuclei preserving both axial and time reversal symmetries. Shape-transition signatures are identified in the N=60 isotopes in both charge radii and spin-parities of the ground states. These signatures are a common characteristic for nuclei in the whole mass region. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasiproton states. Finally, a global picture of the neutron-rich A=100 mass region from Krypton up to Molybdenum isotopes is illustrated with the systematics of the nuclear charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.

    Systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes with the Gogny energy density functional

    Get PDF
    The systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes is studied within the Hartree-Fock-Bogoliubov plus Equal Filling Approximation method preserving both axial and time reversal symmetries. Calculations based on the Gogny energy density functional with both the standard D1S parametrization and the new D1M incarnation of this functional are included in our analysis. The nuclear deformation and shape coexistence inherent to this mass region are shown to play a relevant role in the understanding of the spectroscopic features of the ground and low-lying one-quasineutron states.Comment: 11 page

    Signatures of shape transition in odd-A neutron-rich Rubidium isotopes

    Get PDF
    The isotopic evolution of the ground-state nuclear shapes and the systematics of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny energy density functional with two parametrizations, D1S and D1M, and implemented with the equal filling approximation. We find clear signatures of a sharp shape transition at N=60 in both charge radii and spin-parity of the ground states, which are robust, consistent to each other, and in agreement with experiment. We point out that the combined analysis of these two observables could be used to predict unambiguously new regions where shape transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications

    Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny Energy Density Functional

    Get PDF
    The interplay between the collective dynamics of the quadrupole and octupole deformation degree of freedom is discussed in a series of Sm and Gd isotopes both at the mean field level and beyond, including parity symmetry restoration and configuration mixing. Physical properties like negative parity excitation energies, E1 and E3 transition probabilities are discussed and compared to experimental data. Other relevant intrinsic quantities like dipole moments, ground state quadrupole moments or correlation energies associated to symmetry restoration and configuration mixing are discussed. For the considered isotopes, the quadrupole-octupole coupling is found to be weak and most of the properties of negative parity states can be described in terms of the octupole degree of freedom alone.Comment: 31 pages, 11 figure

    The Elian Gonzalez Discursive Template

    Full text link

    Some consequences of causative clause union in Tagalog

    Get PDF
    • …
    corecore