9,457 research outputs found
Role of Strain on Electronic and Mechanical Response of Semiconducting Transition-Metal Dichalcogenide Monolayers: an ab-initio study
We characterize the electronic structure and elasticity of monolayer
transition-metal dichalcogenides MX2 (M=Mo, W, Sn, Hf and X=S, Se, Te) with 2H
and 1T structures using fully relativistic first principles calculations based
on density functional theory. We focus on the role of strain on the band
structure and band alignment across the series 2D materials. We find that
strain has a significant effect on the band gap; a biaxial strain of 1%
decreases the band gap in the 2H structures, by as a much 0.2 eV in MoS2 and
WS2, while increasing it for the 1T materials. These results indicate that
strain is a powerful avenue to modulate their properties; for example, strain
enables the formation of, otherwise impossible, broken gap heterostructures
within the 2H class. These calculations provide insight and quantitative
information for the rational development of heterostructures based on these
class of materials accounting for the effect of strain.Comment: 16 pages, 4 figures, 1 table, supplementary materia
Shape evolution in Yttrium and Niobium neutron-rich isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and
Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism
based on the Gogny energy density functional with two parametrizations, D1S and
D1M. The equal filling approximation is used to describe odd-A nuclei
preserving both axial and time reversal symmetries. Shape-transition signatures
are identified in the N=60 isotopes in both charge radii and spin-parities of
the ground states. These signatures are a common characteristic for nuclei in
the whole mass region. The nuclear deformation and shape coexistence inherent
to this mass region are shown to play a relevant role in the understanding of
the spectroscopic features of the ground and low-lying one-quasiproton states.
Finally, a global picture of the neutron-rich A=100 mass region from Krypton up
to Molybdenum isotopes is illustrated with the systematics of the nuclear
charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.
Systematics of one-quasiparticle configurations in neutron-rich Sr, Zr, and Mo odd isotopes with the Gogny energy density functional
The systematics of one-quasiparticle configurations in neutron-rich Sr, Zr,
and Mo odd isotopes is studied within the Hartree-Fock-Bogoliubov plus Equal
Filling Approximation method preserving both axial and time reversal
symmetries. Calculations based on the Gogny energy density functional with both
the standard D1S parametrization and the new D1M incarnation of this functional
are included in our analysis. The nuclear deformation and shape coexistence
inherent to this mass region are shown to play a relevant role in the
understanding of the spectroscopic features of the ground and low-lying
one-quasineutron states.Comment: 11 page
Signatures of shape transition in odd-A neutron-rich Rubidium isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We
use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny
energy density functional with two parametrizations, D1S and D1M, and
implemented with the equal filling approximation. We find clear signatures of a
sharp shape transition at N=60 in both charge radii and spin-parity of the
ground states, which are robust, consistent to each other, and in agreement
with experiment. We point out that the combined analysis of these two
observables could be used to predict unambiguously new regions where shape
transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications
Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny Energy Density Functional
The interplay between the collective dynamics of the quadrupole and octupole
deformation degree of freedom is discussed in a series of Sm and Gd isotopes
both at the mean field level and beyond, including parity symmetry restoration
and configuration mixing. Physical properties like negative parity excitation
energies, E1 and E3 transition probabilities are discussed and compared to
experimental data. Other relevant intrinsic quantities like dipole moments,
ground state quadrupole moments or correlation energies associated to symmetry
restoration and configuration mixing are discussed. For the considered
isotopes, the quadrupole-octupole coupling is found to be weak and most of the
properties of negative parity states can be described in terms of the octupole
degree of freedom alone.Comment: 31 pages, 11 figure
- …