156 research outputs found

    Application of a simplifying model to the breakage of different materials in an air jet mill

    Get PDF
    Cet article est paru de nouveau en 2012 dans la revue "International journal of mineral processing", special issue Comminution 2009, (ESCC 2009 - European Symposium on Comminution and Classification, Espoo, Finland, September 15-18, 2009) vol. 112-113, pp. 7-12. (L'article de référence reste celui de 2011 pour les citations bibliographiques).International audienceThis paper describes the application of a unifying `master curve' model for single impact size reduction in an air jet mill. Based on a dimensional analysis and a modified fracture mechanical theory, it enables to relate the weight percentage of broken particles under sieve cut size to the mean sieve cut size of the studied material, the net kinetic energy provided to the material, the number of impacts and a global parameter f(Mat). Altogether 11 sieve cuts of different materials are impacted in an experimental air jet mill. Minimum breakage energies are derived and are shown to vary with a power function of the sieve cut size. The simplifying model is then successfully applied and enables to derive the fMat. parameters. In our situation, the experimental data do not show a direct relationship between fMat. and the minimum breakage energy and sieve cut size for all the materials

    A model study of cellular short-term memory produced by slowly inactivating potassium conductances

    Get PDF
    Abstract. We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions

    A model study of cellular short-term memory produced by slowly inactivating potassium conductances

    Get PDF
    Abstract. We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks) conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes in firing frequency as a function of parameters of the model, injected current and prior history of the neuron (deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal population computation was used. Ks inactivation was found to control the rate of convergence to steady-state discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons. These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of neuronal populations under real physiological conditions

    MHD in von Kármán swirling flows, development and first run of the sodium experiment

    Get PDF
    URL: http://www-spht.cea.fr/articles/s01/004 MHD dans les écoulements de von Kármán | Collaboration VKSNATO Science Series II 26, 35-50 (2001). NATO Advanced Research Workshop, Dynamo and Dynamics, A Mathematical ChallengeWe describe the motivations, development and first run of the Von Kármán Sodium (VKS) experiment built to study high Reynolds number magnetohydrodynamics and applications to the dynamo effect. The flow is optimized using water experiments at scale 1/2 and kinematic dynamo simulations. In VKS run1, induction measurements are made in the presence of an externally applied field. Results are reported concerning the geometry of the induced field and its fluctuations in time

    Dissociating Variability and Effort as Determinants of Coordination

    Get PDF
    When coordinating movements, the nervous system often has to decide how to distribute work across a number of redundant effectors. Here, we show that humans solve this problem by trying to minimize both the variability of motor output and the effort involved. In previous studies that investigated the temporal shape of movements, these two selective pressures, despite having very different theoretical implications, could not be distinguished; because noise in the motor system increases with the motor commands, minimization of effort or variability leads to very similar predictions. When multiple effectors with different noise and effort characteristics have to be combined, however, these two cost terms can be dissociated. Here, we measure the importance of variability and effort in coordination by studying how humans share force production between two fingers. To capture variability, we identified the coefficient of variation of the index and little fingers. For effort, we used the sum of squared forces and the sum of squared forces normalized by the maximum strength of each effector. These terms were then used to predict the optimal force distribution for a task in which participants had to produce a target total force of 4–16 N, by pressing onto two isometric transducers using different combinations of fingers. By comparing the predicted distribution across fingers to the actual distribution chosen by participants, we were able to estimate the relative importance of variability and effort of 1∶7, with the unnormalized effort being most important. Our results indicate that the nervous system uses multi-effector redundancy to minimize both the variability of the produced output and effort, although effort costs clearly outweighed variability costs

    Optimization of Topical Therapy for Leishmania major Localized Cutaneous Leishmaniasis Using a Reliable C57BL/6 Model

    Get PDF
    When initiating the cutaneous disease named cutaneous leishmaniasis (CL), Leishmania parasites develop within the parasitophorous vacuoles of phagocytes residing in and/or recruited to the dermis, a process leading to more or less chronic dermis and epidermis-damaging inflammatory processes. Topical treatment of CL could be a mainstay in its management. Any improvements of topicals, such as new vehicles and shorter optimal contact regimes, could facilitate their use as an ambulatory treatment. Recently, WR279396, a third-generation aminoglycoside ointment, was designed with the aim to provide stability and optimal bioavailability for the molecules expected to target intracellular Leishmania. Two endpoints were expected to be reached: i) accelerated clearance of the maximal number of parasites, and ii) accelerated and stable repair processes without scars. A mouse model of CL was designed: it relies on the intradermal inoculation of luciferase-expressing Leishmania, allowing for in vivo bioluminescence imaging of the parasite load fluctuation, which can then be quantified simultaneously with the onset and resolution of clinical signs. These quantitative readout assays, deployed in real time, provide robust methods to rapidly assess efficacy of drugs/compounds i) to screen treatment modalities and ii) allow standardized comparison of different therapeutic agents

    A homozygous FANCM mutation underlies a familial case of non-syndromic primary ovarian insufficiency

    Get PDF
    Primary Ovarian Insufficiency (P01) affects 1% of women under forty. Exome sequencing of two Finnish sisters with non-syndromic P01 revealed a homozygous mutation in FANCM, leading to a truncated protein (p.GIn1701*). FANCM is a DNA-damage response gene whose heterozygous mutations predispose to breast cancer. Compared to the mother's cells, the patients' lymphocytes displayed higher levels of basal and mitomycin C (MMC)-induced chromosomal abnormalities. Their lymphoblasts were hypersensitive to MMC and MMC-induced monoubiquitination of FANCD2 was impaired. Genetic complementation of patient's cells with wild-type FANCM improved their resistance to MMC re-establishing FANCD2 monoubiquitination. FANCM was more strongly expressed in human fetal germ cells than in somatic cells. FANCM protein was preferentially expressed along the chromosomes in pachytene cells, which undergo meiotic recombination. This mutation may provoke meiotic defects leading to a depleted follicular stock, as in Fancrril- mice. Our findings document the first Mendelian phenotype due to a biallelic FANCM mutation

    Genomic Content of Bordetella pertussis Clinical Isolates Circulating in Areas of Intensive Children Vaccination

    Get PDF
    BACKGROUND: The objective of the study was to analyse the evolution of Bordetella pertussis population and the influence of herd immunity in different areas of the world where newborns and infants are highly vaccinated. METHODOLOGY: The analysis was performed using DNA microarray on 15 isolates, PCR on 111 isolates as well as GS-FLX sequencing technology on 3 isolates and the B. pertussis reference strain, Tohama I. PRINCIPAL FINDINGS: Our analyses demonstrate that the current circulating isolates are continuing to lose genetic material as compared to isolates circulating during the pre-vaccine era whatever the area of the world considered. The lost genetic material does not seem to be important for virulence. Our study confirms that the use of whole cell vaccines has led to the control of isolates that were similar to vaccine strains. GS-FLX sequencing technology shows that current isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era and that the sequenced strain Tohama I is not representative of the isolates. Furthermore, this technology allowed us to observe that the number of Insertion Sequence elements contained in the genome of the isolates is temporally increasing or varying between isolates. CONCLUSIONS: B. pertussis adaptation to humans is still in progress by losing genetic material via Insertion Sequence elements. Furthermore, recent isolates did not acquire any additional material when compared with vaccine strains or with isolates of the pre-vaccine era. Herd immunity, following intensive vaccination of infants and children with whole cell vaccines, has controlled isolates similar to the vaccine strains without modifying significantly the virulence of the isolates. With the replacement of whole cell vaccines by subunit vaccines, containing only few bacterial antigens targeting the virulence of the bacterium, one could hypothesize the circulation of isolates expressing less or modified vaccine antigens

    CRISPR Typing and Subtyping for Improved Laboratory Surveillance of Salmonella Infections

    Get PDF
    Laboratory surveillance systems for salmonellosis should ideally be based on the rapid serotyping and subtyping of isolates. However, current typing methods are limited in both speed and precision. Using 783 strains and isolates belonging to 130 serotypes, we show here that a new family of DNA repeats named CRISPR (clustered regularly interspaced short palindromic repeats) is highly polymorphic in Salmonella. We found that CRISPR polymorphism was strongly correlated with both serotype and multilocus sequence type. Furthermore, spacer microevolution discriminated between subtypes within prevalent serotypes, making it possible to carry out typing and subtyping in a single step. We developed a high-throughput subtyping assay for the most prevalent serotype, Typhimurium. An open web-accessible database was set up, providing a serotype/spacer dictionary and an international tool for strain tracking based on this innovative, powerful typing and subtyping tool

    Stroke Rehabilitation Reaches a Threshold

    Get PDF
    Motor training with the upper limb affected by stroke partially reverses the loss of cortical representation after lesion and has been proposed to increase spontaneous arm use. Moreover, repeated attempts to use the affected hand in daily activities create a form of practice that can potentially lead to further improvement in motor performance. We thus hypothesized that if motor retraining after stroke increases spontaneous arm use sufficiently, then the patient will enter a virtuous circle in which spontaneous arm use and motor performance reinforce each other. In contrast, if the dose of therapy is not sufficient to bring spontaneous use above threshold, then performance will not increase and the patient will further develop compensatory strategies with the less affected hand. To refine this hypothesis, we developed a computational model of bilateral hand use in arm reaching to study the interactions between adaptive decision making and motor relearning after motor cortex lesion. The model contains a left and a right motor cortex, each controlling the opposite arm, and a single action choice module. The action choice module learns, via reinforcement learning, the value of using each arm for reaching in specific directions. Each motor cortex uses a neural population code to specify the initial direction along which the contralateral hand moves towards a target. The motor cortex learns to minimize directional errors and to maximize neuronal activity for each movement. The derived learning rule accounts for the reversal of the loss of cortical representation after rehabilitation and the increase of this loss after stroke with insufficient rehabilitation. Further, our model exhibits nonlinear and bistable behavior: if natural recovery, motor training, or both, brings performance above a certain threshold, then training can be stopped, as the repeated spontaneous arm use provides a form of motor learning that further bootstraps performance and spontaneous use. Below this threshold, motor training is “in vain”: there is little spontaneous arm use after training, the model exhibits learned nonuse, and compensatory movements with the less affected hand are reinforced. By exploring the nonlinear dynamics of stroke recovery using a biologically plausible neural model that accounts for reversal of the loss of motor cortex representation following rehabilitation or the lack thereof, respectively, we can explain previously hard to reconcile data on spontaneous arm use in stroke recovery. Further, our threshold prediction could be tested with an adaptive train–wait–train paradigm: if spontaneous arm use has increased in the “wait” period, then the threshold has been reached, and rehabilitation can be stopped. If spontaneous arm use is still low or has decreased, then another bout of rehabilitation is to be provided
    corecore