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Abstract. We analyzed the cellular short-term memory effects induced by a slowly inactivating potassium (Ks)
conductance using a biophysical model of a neuron. We first described latency-to-first-spike and temporal changes
in firing frequency as a function of parameters of the model, injected current and prior history of the neuron
(deinactivation level) under current clamp. This provided a complete set of properties describing the Ks conductance
in a neuron. We then showed that the action of the Ks conductance is not generally appropriate for controlling
latency-to-first-spike under random synaptic stimulation. However, reliable latencies were found when neuronal
population computation was used. Ks inactivation was found to control the rate of convergence to steady-state
discharge behavior and to allow frequency to increase at variable rates in sets of synaptically connected neurons.
These results suggest that inactivation of the Ks conductance can have a reliable influence on the behavior of
neuronal populations under real physiological conditions.
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Introduction

The temporal behavior of biological neural networks
depends on interaction between the intrinsic properties
of single neurons and synaptic connections between
neurons (Llinás, 1988; Harris-Warrick and Marder,
1991; Bargas and Galarraga, 1995; Marder et al., 1996).
A great variety of endogenous neuronal dynamics
shape the output of neural networks. Rhythmic burst-
ing, plateau potentials, and postinhibitory rebound are
crucial in the central pattern generator networks of
invertebrates (Harris-Warrick and Marder, 1991). In-
trinsic membrane oscillations could be involved in the
generation of synchronous firing of large neuronal pop-
ulations in vertebrates (Llin´as, 1988; Silva et al., 1991).
There is evidence that spike-frequency adaptation due
to calcium-gated potassium conductances modulates
gain in neuronal feedback systems (Lisberger and

Sejnowski, 1992) and determines the temporal com-
plexity and dynamics of how representations are re-
called in associative memory networks (Cartling, 1993;
Barkai et al., 1994; Cartling, 1997). Short-lasting
synaptic inputs may be transformed into long-lasting
motor output in motoneurons (Kiehn, 1991; Booth
et al., 1997) and sustained discharges maintained in
prefrontal neurons (Guigon et al., 1995; Delord et al.,
1997; Camperi and Wang, 1998) by a property of bista-
bility.

Cellular forms of short-term memory induced by
low-threshold slowly inactivating outward conduc-
tances are ubiquitous and widely recognized intrinsic
properties of neurons (the generic term Ks is used to
indicate these conductances in this text) (Byrne et al.,
1979; Byrne, 1980; Getting, 1983; Storm, 1988; Bargas
et al., 1989; Huguenard and Prince, 1991; Spain
et al., 1991a; Hammond and Cr´epel, 1992; Marom
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and Abbott, 1994; Nisenbaum et al., 1994; Wang and
McKinnon, 1995; Turrigiano et al., 1996; Gabel and
Nisenbaum, 1998). The most striking effect of these
conductances is to prolong the latency-to-first-spike
(∼0.1 to 10 s) in response to current steps (Storm,
1988; Turrigiano et al., 1996). This property is due to
a memory of inhibition: hyperpolarization of the neu-
ron deinactivates the conductance and slows down the
rate of membrane potential change during a subsequent
depolarization (Storm, 1988). Some neurons also dis-
play amemory of excitation: a period of depolarization
inactivates the conductance and increases the response
of the neuron to subsequent inputs (Turrigiano et al.,
1996).

The existence of such forms of memory has led
to the suggestion that the Ks conductances contri-
bute to the temporal integration of synaptic inputs
(Storm, 1988; Hammond and Cr´epel, 1992; Surmeier
et al., 1991; Nisenbaum et al., 1994; Gabel and
Nisenbaum, 1998) and to the patterning of dis-
charge (Getting, 1983; Hammond and Cr´epel, 1992;
Nisenbaum et al., 1994; Gabel and Nisenbaum, 1998),
by controlling the latency of the first spike (Storm,
1988; Bargas et al., 1989; McCormick, 1991; L¨uthi
et al., 1996; Turrigiano et al., 1996) and repetitive firing
(Surmeier et al., 1991; Hammond and Cr´epel, 1992).
More generally these cellular computations could con-
tribute to dynamics and operation of neural networks,
such as coding by the time of the spike and processing
sequential information.

However, it is necessary to examine the conditions
under which cellular short-term memory may exist and
the strength of these effects before considering these
promising computational functions. Most studies of
Ks conductances have been performedin vitro using
constant or ramp stimulating currents, whereas neu-
ronsin vivo receive widely fluctuating synaptic inputs
(Shadlen and Newsome, 1994). This study was there-
fore carried out to describe the actions of a Ks conduc-
tance under current clamp (in vitro) and under random
synaptic stimulationsin vivoin a biophysical model of a
neuron. We have specifically examined how the mem-
ory of inhibition induced by this conductance is ex-
pressed under these conditions. We first evaluated the
discharge behavior of the model under current clamp
protocols (in vitro conditions). Several models have ex-
amined the effects of Ks conductance inactivation on
latency-to-first-spike (Marom and Abbott, 1994; Rush
and Rinzel, 1995), oscillatory properties of discharge
(Wang, 1993; Rush and Rinzel, 1995), and synaptic

transmission in dendrites (Wilson, 1995). However,
no one model has systematically documented the dis-
charge latency and frequency effects that result from
the presence of a Ks conductance. We have developed
a simplified analytical description that clarifies the in-
fluence of the Ks conductance on the discharge of the
neuron. The second part investigates the properties of
the same model under synaptic stimulation by stochas-
tic Poisson inputs and within neuronal networks.

Methods

An isopotential model was used to evaluate the effect
of a slowly-inactivating potassium (Ks) conductance
on the discharge behavior of a neuron. The model is
not meant to represent a particular neuron but rather
to describe the typical influence of the conductance on
somatic spiking processes. However, the model was
based as much as possible on data from a single type
of neuron (neocortical pyramidal neuron) to study the
conductance in a coherent physiological context. The
model comprised four conductances: the sodium and
potassium conductances of the action potential (Na, K),
a leakage conductance (leak), and the Ks conductance.
The discharge behavior of the model neuron was as-
sessed using two stimulation protocols (in vitro, in
vivo).

Isopotential Neuron Model

The change in the membrane potential was given by
the following equation:

C
dV

dt
+ INa+ IK + IKs+ I leak− I = 0,

where the membrane capacitanceC is 1µF.cm−2. The
leakage current was given byI leak= gleak(V − Eleak),
whereEleak=−70 mV andgleak= 0.05 mS.cm−2 (pas-
sive time constantτ = 20 ms). The currentI was either
the injected current (in vitro conditions) or the synaptic
current (in vivoconditions). A positive injected current
was depolarizing.

Action Potential Conductances

The models of action potential conductances were
derived from Lytton and Sejnowski (1991). The fast
sodium current was described by

INa = ḡNam
3
∞h(V − ENa),
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whereENa = 45 mV andḡNa = 20 mS.cm−2. The
activation gatem was replaced by its steady state acti-
vation function, with

αm(V) = 0.55(V + 45.5)

1− exp
(−V−45.5

4

)
βm(V) = 0.44(V + 18.5)

exp
(

V+18.5
5

)− 1
.

The inactivation gate followed first-order kinetics with

αh(V) = 0.115 exp

(−V − 48

18

)
βh(V) = 3.6

1+ exp
(−V−25

5

) .
The fast potassium current was given by

IK = ḡK n4(V − EK ),

whereEK = −85 mV andḡK = 1.5 mS.cm−2. The
kinetics ofn followed

αn(V) = 0.0178(−V − 50)

exp
(−V−50

5

)− 1

βn(V) = 0.28 exp

(−V − 55

40

)
.

Slowly Inactivating Potassium Conductance

Slowly inactivating outward currents are ubiquitous
in the brain (Llinás, 1988). The currents in differ-
ent structures of the nervous system have different
voltage-dependent, kinetic and pharmacological prop-
erties and different names (I D, IKs, I As, IK2). But they
all have a low activation threshold (∼ −60 mV; Storm,
1988; McCormick, 1991; Hammond and Cr´epel, 1992;
Foehring and Surmeier, 1993), and slow, possibly mul-
tiple, inactivation rates (Storm, 1988; Spain et al.,
1991b; Hammond and Cr´epel, 1992; Foehring and
Surmeier, 1993). The main difference between the
Ks conductances, besides pharmacological character-
istics, is the absolute value of the time constant of
inactivation and the voltage dependence of this time
constant. The time constant can be from hundreds
of milliseconds (Foehring and Surmeier, 1993) to
several tens of seconds (L¨uthi et al., 1996). Some

conductances recover from inactivation much slower
than they inactivate (Kv1.3 conductance; Marom and
Levitan, 1994; Turrigiano et al., 1996). Hippocampal
and striatal Ks conductances have both slow inacti-
vation and slow recovery (Storm, 1988; Nisenbaum
et al., 1994). In the neocortex and thalamus, deinactiva-
tion appears to be faster than inactivation (Huguenard
and Prince, 1991; McCormick, 1991; Spain et al.,
1991b; Hammond and Cr´epel, 1992; Foehring and
Surmeier, 1993). These differences result in different
temporal characteristics (such as long time constants
produce long latencies to the first spike) and different
relative strengths of memory effects. We have used a
model of the neocortical Ks conductance described by
Hammond and Cr´epel (1992) for the following reasons:
(1) this conductance is well suited to a study of memory
of inhibition since its slow inactivation results in a large
effect on first-spike latency and its fast deinactivation
allows efficient control of this effect by hyperpolar-
ization; (2) a complete description of activation and
inactivation processes is provided; (3) current-clamp
recordings with pharmacological manipulations illus-
trate the functional role of Ks conductance.

The results presented here are probably qualitatively
similar for other Ks conductances; however, the func-
tional conclusions are likely to depend on the proper-
ties of each conductance. The activation of Ks con-
ductances could also have important computational
roles (Wang, 1993; Gutfreund et al., 1995; Hansel and
Sompolinsky, 1996; Golomb and Amitai, 1997).

The slowly inactivating potassium current was de-
scribed by

IKs = ḡKsmKshKs(V − EK ),

with ḡKs= 1 mS.cm−2. The activation variable obeyed
first-order kinetics and its steady-state activation func-
tion was taken as (Fig. 1A)

m∞Ks(V) =
1

1+ exp
(− V+44

5

)
(Storm, 1988; McCormick, 1991; Hammond and
Crépel, 1992; Foehring and Surmeier, 1993). A
voltage-independent time constantτmKs of 50 ms
was used. The steady-state inactivation function was
(Fig. 1A)

h∞Ks(V) =
1

1+ exp
(

V+74
9.3

)
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Figure 1. The slowly inactivating potassium (Ks) conductance
model. A: Steady-state activation and inactivation functions.B:
Inactivation time constant function.

from Hammond and Cr´epel (1992). The inactivation
of Ks conductance at the onset of simulations was rep-
resented by 1−hini , wherehini is the initial deinactiva-
tion. The inactivation/deinactivation time constant was
fitted to a sigmoid curve (Huguenard and McCormick,
1992; Wang, 1993) from the data of Hammond and
Crepel (1992). It is voltage-dependent with slow inac-
tivation at depolarized potentials and fast deinactiva-
tion at hyperpolarized potentials (Fig. 1B)

τhKs(V) = 200+ 4800

1+ exp
(−V+50

9.3

) .

Parameter Study

The model was defined by a number of parameters.
Since we were interested in the inactivation of Ks
conductance, most of the parameters were kept con-
stant (membrane and action potential parameters, Ks

activation parameters). In the initial part of the study,
the Ks maximal conductance (ḡKs) and the Ks inac-
tivation time constant (τhKs) were varied to represent
possible regulations (LeMasson et al., 1993). These
two intrinsic parameters remained constant in the rest
of the study. We defined two types of neuron: the “stan-
dard” neuron (̄gKs = 0) and the “slowly inactivating”
neuron (̄gKs = 1). The principalcontrol parameters
of the model were the injected currentI and the initial
value of the inactivation gatehini (deinactivation level).
The two control parameters are independent: (1)hini

reflects the past history of the neuron (althoughhini is
referred to as a control parameter for convenience, it
actually constitutes an initial condition of the dynami-
cal system described above); (2)I is a forcing function
of the system. Note thathini can be represented by a
conditioning current or a conditioning voltage (that is,
a current- or a voltage-clamp protocol leading to this
level of deinactivation).

In Vitro Studies

The two control parameters were varied systematically.
Althoughhini can theoretically take any value between
0 and 1, its range is determined under physiologi-
cal conditions by the kinetics of the conductance (see
above). In the present case, deinactivation is faster
than inactivation, sohini can be more easily increased
than decreased. However, a large range ofhini was ex-
plored to keep the model as general as possible. We
will use the terminactivated(respectively,deinacti-
vated) to indicate thathini ≤ h∞Ks(Vrest) ≈ 0.4 (resp.
hini ≥ h∞Ks(Vrest)), whereVrest is the resting potential of
the neuron.

In Vivo Studies

Cortical neuronsin vivo discharge in a highly irreg-
ular fashion (Softky and Koch, 1993; Shadlen and
Newsome, 1994). This variability arises in part because
these neurons receive strongly fluctuating excitatory
and inhibitory inputs (Softky and Koch, 1993; Stevens
and Zador, 1998). In these conditions, the total input
current that impinges on a neuron deviates largely from
the perfect clamp ofin vitro studies. Thus, properties
that are observedin vitro are likely to be alteredin vivo.

In a standard model of cortical discharge variability,
a neuron receives a large number of afferent excitatory
and inhibitory inputs representing both spontaneous
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and evoked activity in cortical networks (Shadlen and
Newsome, 1994). Presynaptic spike trains are in gen-
eral Poisson. An important and unknown parameter of
this model is the degree of synchronization in presy-
naptic spike trains (Softky and Koch, 1993; Stevens
and Zador, 1998). The stronger the synchronization,
the larger the variability of the synaptic current. A
simple way to account for the degree of variability is
to consider that a unitary postsynaptic potential (PSP)
represents the contribution of several coincident presy-
naptic spikes. In this way, a set of synchronized in-
coming trains can be replaced by a single train with an
appropriately scaled synaptic conductance.

On this basis, we defined the total synaptic current
as

I (t) = Isyn(t) = gexc(t)(Eexc−V)+ ginh(t)(Einh−V),

whereEexc= 0 andEinh = −85 mV. The total exci-
tatory synaptic conductancegexc(t) was calculated as
the sum of excitatory synaptic conductances elicited by
presynaptic action potentials

gexc(t) = σ ḡexc

nexc∑
i=1

α
(
t − t i

exc

)
H
(
t − t i

exc

)
,

whereḡexc is the maximal excitatory synaptic conduc-
tance,σ a scaling factor (see below),nexc the num-
ber of presynaptic spikes, (t i

exc) the spike arrival times
generated by a Poisson process at the frequencyfexc,
H the Heaviside function (H(x) = 1 if x ≥ 0 else
H(x) = 0), andα the function defined by

α(t) = et

τ
e−t/τ

with τ = 3 ms. The total inhibitory synaptic conduc-
tanceginh(t)was defined in the same way, withḡinh and
finh.

Estimates of presynaptic frequencies have been ob-
tained based on anatomical and electrophysiological
arguments (Shadlen and Newsome, 1994). A cortical
neuron receives 3,000 to 10,000 synapses,∼80% of
which are excitatory (Peters, 1987). If 10% of the ex-
citatory synapses are stimulated at 20 Hz, the range
of excitatory frequencies is 4.8 to 16 kHz. If 10% of
the inhibitory synapses are stimulated at 40 Hz, the
range of inhibitory frequencies is 2.4 to 8 kHz. The
inhibitory presynaptic frequencyfinh was set at 4 kHz.
The excitatory frequencyfexc was varied to obtain a
given output frequency (see below).

The synaptic conductances were derived from es-
timated sizes of postsynaptic potentials in neocortex.
The size of EPSPs are in the range of 0.05 to 2 mV
(Komatsu et al., 1988; Mason et al., 1991; Nicoll and
Blakemore, 1993). The size of IPSPs are in the range
of 0.1 to 1.5 mV (Deuchars and Thomson, 1995) and
0.2 to 3.5 mV (mean∼1.4 mV) at −60/−55 mV
(Thomson et al., 1996). We chose 0.8 and 0.7 mV
as standard sizes of EPSPs and IPSPs at resting po-
tential, respectively. The size of IPSPs at−60 mV
was 1.2 mV. The corresponding synaptic conductances
wereḡexc= 2.5·10−3 andḡinh = 7·10−3 (in mS.cm−2).
With these values, the range offexc was 7 to 11 kHz in
order to obtain postsynaptic discharges at 10 to 70 Hz.
The coefficient of variation (CV) of a 30 Hz discharge
was∼0.7, well within the range of cortical variability
(Softky and Koch, 1993).

Different degrees of variability were modeled for the
same output frequency. The actual inhibitory presynap-
tic frequency and synaptic conductances werefinh/σ ,
σ ḡexc, andσ ḡinh, whereσ is in the range of 0.1 to 1. The
presynaptic excitatory frequency was scaled to keep
the output frequency constant. Scaling synaptic con-
ductances or PSP sizes are the same since the two are
linearly related in the range under study. Note that the
lowestσ produces a CV of∼0.45 at 30 Hz, which is at
the lower limit of cortical variability (Softky and Koch,
1993; Shadlen and Newsome, 1994). Unless otherwise
specified,σ = 1.

Quantitative Description of Discharge Behavior

We used five numbers to describe the discharge behav-
ior of the modeled neuron: the latency-to-first-spike,
the initial frequency following the possible latency, the
steady-state frequency, the time constant of frequency
change, and the ratio of steady to initial frequency
(ramp gain).

The following definitions were used forin vitro con-
ditions. The criteria used to measure a latency in the
presence of the Ks conductance were the following:
(1) if the voltage remained subthreshold for 15 s, the in-
jected current was considered to be subthreshold; (2) if
the time of the first spike was>500 ms, the latency was
given this duration; (3) if early spikes occurred and an
interspike interval (ISI)>500 ms was found later, the
latency was the total time between the beginning of the
stimulation and the end of the ISI (delayed discharge);
(4) otherwise the neuron discharged without delay (im-
mediate discharge). These criteria are needed to remove
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transient effects due toKs activation. Though these
choices are arbitrary, they have little influence on the
reported results. When̄gKs = 0, the latency was sim-
ply the time to the first spike. The initial frequency
of the discharge was the frequency measured after the
transitory period due to activation of Ks conductance.
Calculations are outlined in Appendix B. The steady
frequency was the reciprocal of the last ISI after 15 s
discharge. The time constant of frequency change was
obtained by a fit of the instantaneous frequency to a
monoexponential function.

Closely related definitions were used forin vivocon-
ditions. The latency was the mean of latencies (20 repli-
cations) obtained as described above. The coefficient
of variation of the latency was defined as the standard
deviation divided by the mean of latencies (20 replica-
tions). The initial frequency was the mean frequency
(50 replications) measured after the transitory period
due to activation of the Ks conductance at a fixed level
of deinactivation. The steady frequency was the mean
steady frequency (50 replications) in the last 250 ms
discharge of the 15 s discharge. The time constant
of frequency change was obtained by fitting the mean
frequency to a monoexponential function.

Simulations

In all the simulations, a conditioning protocol was used
to fixate the initial level of deinactivationhini . For the
sake of simplicity, we assumed that the membrane po-
tential always starts from the resting potential. Thus
the initial conditions wereV = Vrest, x = x∞(Vrest)

with x = {m, h, n,mKs}, hKs = hini . This led to a
slight underestimate in latency calculations (∼20 ms
for a conditioning voltage ofVrest± 10 mV). Numeri-
cal solutions of the differential equations were obtained
using a backward Euler method, with an integration
time step of 100µs.

Results

Latency to First Spike in Vitro

The behavior of the model in response to a 4 scurrent
step (I = 2 µA.cm−2) was studied. Figure 2 shows
three typical firing patterns obtained starting from dif-
ferent initial levels of deinactivation (from top to bot-
tom, hini = 0.6, 0.4, 0.2). In the first two cases the
membrane potential gradually increased over several

seconds to the action potential threshold (Figs. 2A and
2B). This rise was due to the slow inactivation of the Ks
conductance which progressively allowed a stronger in-
fluence of the injected depolarizing current (Figs. 2A
and 2B). The latency-to-first-spike was longer for a
more deinactivated initial level (Fig. 2A) and disap-
peared for an initially inactivated level (Fig. 2C). In all
cases the activation gate rapidly followed the voltage
changes. An initial spike sometimes preceded the de-
lay before sustained firing because of a buildup of Ks
activation (Figs. 2A and 2B), much like that observed
by Spain et al. (1991a) and Marom and Abbott (1994).
This phenomenon would not be observed with faster
activation kinetics (such asτmKs= 10 ms).

Latency-to-first-spike was systematically studied by
varying the amplitude of the input current (0≤
I ≤ 5 µA.cm−2), the initial level of deinactiva-
tion (0 ≤ hini ≤ 1), the time constant of Ks (us-
ing a voltage-independent time constantτhKs between
1 and 5 s), and the maximal conductance of Ks
(0 ≤ ḡKs≤ 2 mS.cm−2). The latency decreased with
increasing amplitude of the input current for different
hini (Fig. 3A). The latencies were long and occurred
over a large range of injected currents when the Ks
conductance was initially strongly deinactivated. The
latencies were smaller and appeared only for a narrow
range of currents for initial inactivated states. Each
curve was delimited by a minimal current (subthresh-
old) and a maximal current (immediate discharge). As
a control, no delays longer than∼250 ms were ob-
tained (using the same discretization step as for the
model with Ks conductance) when a Ks conductance
was absent (Fig. 3A, inset). The delay increased with
hini (Fig. 3B),τhKs (Fig. 3C), andḡKs (Fig. 3D).

An analytical description of the role of Ks in-
activation in the discharge behavior of the neuron
was developed (Appendix A). Equation (4) pro-
vides a good qualitative explanation of the simula-
tion results. Latency-to-first-spike varies linearly with
−ln(I − αI ), ln(hini − αh), τhKs, −ln(1/ḡKs− αg),
whereαI , αh, andαg are parameters. These equations
were appropriate to fit the data in Fig. 3. Comparison
of Eqs. (4) and (6) in Appendix A helps explaining the
role of the Ks conductance. First, the inactivation time
constant of Ks substitutes for the membrane time con-
stant. Second, the dependence on the injected current
is−ln(1− αI /I ) in the Lapicque model and becomes
−ln(I − αI ) in the Ks neuron. Both relations have the
same asymptotic behavior asI → α+I but differ for
large values ofI . The former stops changing rapidly
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Figure 2. Latency-to-first-spike. Left-hand column shows voltage variations. Right-hand column shows Ks activation (plain line) and inacti-
vation (gray line) gates. Injected current wasI = 2µA.cm−2. Initial deinactivation was 0.6 (A), 0.4 (B), 0.2 (C).

since it reaches an asymptote at 0. The latter decays
more progressively.

Discharge Behavior in Vitro

The pattern of discharge was influenced by both
I and hini (Fig. 4A). Three typical patterns were
found: a delay followed by an increase in frequency

(Fig. 4A1), an immediate discharge at increasing fre-
quency (Fig. 4A2), and a discharge at approximately
constant frequency (Fig. 4A3). There was also a weakly
adaptating discharge pattern for lowhini (not shown).
The instantaneous frequency (inverse of ISIs) of the
discharge was calculated for differentI (Fig. 4B) and
hini (Fig. 4C). At largeI , discharge began immediately.
Smaller currents resulted in nonzero latency-to-first-
spike (Fig. 4B). In both cases a brief transitory period
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Figure 3. Parameter study of latency-to-first-spike. Parameters that are not specified are as indicated in Methods. Fits were obtained from
equation (4) in Appendix A.A: Latency versus injected current for differenthini (cross: 1; star: 0.6; plus: 0.4; open dot: 0.2). Unbroken lines
are best fits toy = α ln(x + β)+ γ . Inset is the case with̄gKs = 0 (best fit toy = α ln(β − 1/x)). B: Latency versushini for different injected
currents (cross: 2.4; star: 2; closed dot: 1.8; plus: 1.6; open dot: 1.4, inµA.cm−2). Plain lines are best fits toy = α ln(x + β)+ γ . C: Latency
versus time constant for different injected currents. Same symbols as inB. Unbroken lines are best linear fits.D: Latency versus maximal
conductance for different injected currents. Same symbols as inB. Unbroken lines are best fits toy = α ln(1/x + β)+ γ .

due to Ks activation buildup was followed by a mono-
exponentially increasing discharge (time constant of
∼2.6 s). Initial and steady frequencies (see defini-
tions in Methods, Appendix B, and below) increased
with the injected current (Fig. 4B). The influence of
hini is shown in Fig. 4C. All the discharges terminated
at the same steady frequency for a givenI . For im-
mediate discharges, the initial frequency decreased as
hini increased. For delayed discharges, the initial fre-
quency varied little withhini . The frequency decreased
to steady state for lowhini (0.1).

We have developed a method to explain the whole
discharge behavior and to rigorously define the ini-
tial discharge frequency. Since Ks inactivation is very
slow, the discharge frequency at any given time is close
to the steady frequency obtained using the inactivation
gate as a parameter equal to the deinactivation level at

this time. We calculated the steady frequency of the
discharge as a function of the deinactivation level con-
sidered as a constant parameter (hparam)—that is, the
time constant of Ks conductance was taken to be infi-
nite (Fig. 5A). We found that the frequency decreased in
a quasi-linear fashion for each current and then abruptly
waned to zero ashparam increased (Fig. 5A). This sug-
gests that repetitive firing (for parameterhparam) begins
at a nonzero frequency (see Appendix B). We defined
the initial frequency of the discharge as this numerically
estimated onset frequency (crosses in Fig. 5A). The
way to read the plot in Fig. 5A is the following (Fig. 5A,
inset). Choose ahparam (e.g. 0.6) and an injected cur-
rent (such asI = 3). The frequency remains at 0 until
the inactivation gate reaches∼0.4. At this level, the
frequency jumps at∼15 Hz (cross) and then follows
the curve until the steady state (star). We calculated
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Figure 4. A: Influence ofI andhini on discharge frequency (A1:I = 2.4, hini = 0.4; A2: I = 2.8, hini = 0.4; A3: I = 2.4, hini = 0.2).
B: Instantaneous firing rate during a 15 s discharge. Initial deinactivation level was 0.4. From top to bottom, the injected current was 4, 3.6,
3.2, 2.8, 2.4, 2, and 1.6 (µA.cm−2). Gray lines indicate delayed discharges. In this case, early spikes and the first spike after the delay were
not taken into account in the calculus of frequency.C: Instantaneous firing rate during a 4 sdischarge. The injected current was 2.4µA.cm−2.
From top to bottom,hini was 0.1, 0.2, 0.3, 0.4, 0.6, and 0.8. The steady frequency after 15 s discharge is indicated by a dashed line.

the discharge frequency as a function ofI . The initial
and steady frequencies were a threshold close-to-linear
function of I for differenthini (Fig. 5B). The ramp gain
(see Methods) increased withI and hini for delayed

discharges (Figs. 5C and 5D). It decreased withI (since
initial and steady frequencies increased withI in a sim-
ilar way; Fig. 5B) and remained constant withhini for
immediate discharges (Figs. 5C and 5D). These results
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Figure 5. A: Frequency versushparam for infinitely slow inactivation with different injected currents (from top to bottom: 5, 4.5, 4, 3.5, 3, 2.5,
2, 1.5µA.cm−2). Symbols are calculated points. The onset frequency of firing is indicated by a plus symbol. The steady frequency calculated
with normal inactivation is indicated by a star symbol.B: Initial (normal lines) and steady (thick line) frequency versus injected current for
different hini (from top to bottom: 0.3, 0.35, 0.4, 0.45, 0.5).C: Ramp gain (steady frequency/initial frequency) versus injected current for
differenthini (from top to bottom: 0.5, 0.45, 0.4, 0.35, 0.3).D: Ramp gain versushini for different injected currents (from left to right: 1.5, 2,
2.5, 3, 3.5, 4, 4.5, 5µA.cm−2).

show that a wide variety of ramp firing patterns can be
built by altering the control parameters.

The discharge pattern is determined by the control
parametersI andhini . However,hini is not a directly ac-
cessible physiological parameter, since it results from
prior conditioning of the neuron—that is, a current
clamp (Icond) of a given duration and intensity that leads
to this level of deinactivation. To understand how a neu-
ron should be stimulated to obtain a given pattern of
discharge we determined the relation betweenhini and
Icond. We used the kinetic model of Ks inactivation to
calculate the deinactivation reached after a condition-
ing period (0≤ t ≤ 3 s) at subthreshold conditioning
potentials (Fig. 6A and inset). The starting deinacti-
vation level was the steady-state deinactivation level at
−50 mV (that is, the maximal subthreshold depolariza-
tion during interspike intervals). It corresponds to the
least favorable case in which conditioning starts while

the neuron is discharging. Figure 6A helps to evaluate
the physiological relevance of conditioning. It shows
that substantial deinactivation occurs for 250 to 500 ms
of hyperpolarization at−80 mV (see Discussion). We
then derivedhini as a function of the conditioning volt-
age. The conditioning voltage was translated into a
conditioning current (Icond) using theI /V curve of the
neuron. The relation betweenhini and Icond is recon-
structed in Fig. 6B for different times of conditioning.
This relation was close to linear. Thus the previous
considerations on a control of frequency byI andhini

can be extended toI andhini .

Discharge Behavior in Vivo

The question arises whether Ks conductance can also
produce delay-to-firing under conditions of random
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Figure 6. A: Deinactivation of Ks conductance as a function of
time and conditioning potential. Each curve corresponds to ahini

(from top to bottom 0.25, 0.3, 0.35, 0.4 (strong line), 0.45, 0.5, 0.55,
0.6, 0.65) and indicates the time it takes to increase the Ks inacti-
vation gate fromh∞Ks(−50) = 0.07 to hini at a given conditioning
potential. Inset is the conditioning protocol (top:h(t); bottom: volt-
age). Calibration bar is 1 s.B: Conditioning current versushini for
different conditioning durations (from left to right, 150, 250, 350,
and 450 ms).

synaptic drive (see Methods). The discharge of a slowly
inactivating neuron (Fig. 7A) at two differenthini is
shown in Fig. 7B. The steady-state frequency was
∼15 Hz. The response was characterized by large
fluctuations in membrane potential. Delayed discharge
was observed only for fully deinactivated initial states
(Fig. 7B). These observations differ from the results
obtainedin vitro.

Mean latency-to-first-spike was calculated for dif-
ferent fexc and hini at different degrees of variability
(σ ). We first considered the case whereσ = 1. This
latency was plotted against the steady-state discharge
frequency (Fig. 7C). For the sake of comparison, thein
vivo andin vitro data (taken from Fig. 3A) are shown
in the same plot (Fig. 7C). Mean latencies were shorter
by an order of magnitude forin vivo thanin vitro. The

longest latencies were found at low stimulation fre-
quency and in fully deinactivated states (Fig. 7C). The
latency was calculated for differentσ and then plot-
ted against the size of the unitary EPSPs (Fig. 7D).
As expected, the longest latencies occurred with small
EPSPs (lowσ ) but were still considerably shorter than
in vitro. In addition to being short, the calculated laten-
cies were also highly variable. The CV of the latency
was above 0.5 for anyσ > 0.5 (Fig. 7D, inset).

These results indicate that the presence of Ks con-
ductance has an actual influence on latency-to-first-
spikein vivo. However, this influence depends dramat-
ically on the variability of synaptic inputs. At a realistic
degree of variability, latency was mainly determined by
random crossings of the spike threshold due to rapid
stochastic variations in membrane potential. Thus the
Ks inactivation process is probably not suitable for pro-
ducing a reliable latency-to-first-spike at the single neu-
ron levelin vivo.

The main action of the Ks conductance was on the
mean discharge frequency of the neuron. An exam-
ple of instantaneous frequency is shown in Fig. 7E.
Figure 7F shows the mean firing rate of a 15 s dis-
charge for differenthini . The mean frequency increased
exponentially with a time constantτ f ≈ 2.6 s (that is,
∼ τhKs(−50)). This change paralleled the slow inacti-
vation of the Ks conductance at the depolarized poten-
tials encountered during synaptic stimulation (Fig. 7F,
inset).

Figure 8 depicts the quantitative analysis of firing
frequency forin vivo conditions (compare to Fig. 5).
Several trends were common toin vivoandin vitro con-
ditions. The discharge frequency decreased withhparam

(Fig. 8A). The initial and steady frequencies increased
with the stimulation frequencyfexc(Fig. 8B). The ramp
gain decreased withfexc for largehini (Fig. 8C) and in-
creased withhini (Figs. 8D). However, there were also
some specificin vivofeatures. There was no sharp tran-
sition to zero-frequency discharge ashparam increased
(Fig. 8A). Thus, the behaviors were similar at low and
high frequencies (Fig. 8B), with a linear change in ramp
gain with fexc(Fig. 8C). The ramp gain was also weakly
dependent on the stimulation frequency (and thus on
the discharge frequency) over a wide range ofhini and
increased withhini (Figs. 8C and 8D). This trend was
also observedin vitro, but only at higher frequencies
(>100 Hz) (Figs. 5C and 5D). These relations held
more strictly at lowhini (Fig. 8D). Since the steady inac-
tivation level during synaptic stimulation at 8 to 12 kHz
is 0.05 to 0.1, deinactivation from this value sets the
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Figure 7. Response of a single neuronin vivo. A: The neuron receives two presynaptic spike trains (closed circle: excitatory synapse; open
circle: inhibitory synapse).B: Discharge of the neuron model forfexc= 8 kHz, finh = 4 kHz, hini = 0.4 (top), andhini = 1 (bottom). The
same input was used in the two simulations.C: Latency versus steady-state output frequency forhini = 0.4 (plain line) andhini = 1 (gray line).
Variability σ = 1. Stimulation frequency wasfexc= 8, 9, 10 kHz (from left to right), andfinh = 4 kHz. Output frequency was calculated as
the mean over 20 replications of 4 s discharge at steady-state inactivation. Thein vitro data from Fig. 3A are replotted using the steady-state
I / f curve of Fig. 5B:hini = 0.4 (dashed line),hini = 1 (gray dashed line).D: Latency versus EPSP size forhini = 0.4 (plain line) andhini = 1
(gray line). Plain and gray lines on left border indicate the latencyin vitro. Stimulation frequency wasfexc= 9 kHz and finh = 4 kHz. Inset
is the CV of latency plotted against EPSP size.E: Instantaneous discharge frequency forhini = 0.6, fexc= 10 kHz, finh = 4 kHz. F: Mean
discharge frequency (50 replications) forfexc= 10 kHz andfinh = 4 kHz and for differenthini (from top to bottom: 0.2, 0.4, 0.6, 0.8). Inset is
the time course of inactivation during the discharge. Bin for mean frequency calculation is 250 ms.
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Figure 8. A: Mean discharge frequency (over 4 s) versushparam in the case of infinitely slow inactivation for different excitatory stimulation
frequencies (from bottom to top:fexc = 8, 9, 10, 11, 12 kHz;finh = 4 kHz). The steady frequency is indicated by a star.B: Mean initial
(normal lines) and steady (thick line) frequency versus excitatory frequency for differenthini (from top to bottom, 0.2, 0.3, 0.4, 0.5, 0.6).C:
Ramp gain (steady frequency/initial frequency) versusfexc for differenthini (from top to bottom: 0.6, 0.5, 0.4, 0.3, 0.2). Dashed line is a unit
gain. D: Ramp gain versushini for different fexc (from top to bottom: 8, 9, 10, 11, 12 kHz).

ramp gain of the discharge independent of the injected
current. Thus, each control parameter has a specific,
independent influence in these conditions:fexcsets the
steady frequency andhini the gain.

We showed that the mean discharge of the modeled
neuronin vivo displays a ramp pattern. This suggests
that it can convey information on the time of the first
spikes. We thus asked whether a population of ramp-
firing neurons could provide instantaneous information
on spike latency. Any threshold device could be used to
decode this information. We chose a standard “postsy-
naptic” neuron (̄gKs = 0) as a decoding device in order
to evaluate how a target neuron outside the neocortex
(e.g. a motoneuron) could convert cortical signals into
behavioral outputs.

The discharge behavior of the postsynaptic neu-
ron receiving inputs from a population of presynap-
tic slowly inactivating neurons (similar to the single

neuronin vivo) was tested (Fig. 9A). The postsynaptic
neuron received only excitatory signals. The size of the
presynaptic population (N = 40) was chosen to obtain
substantial latency effects in the midrange of presy-
naptic stimulation frequencies (fexc= 8 to 10 kHz. In
these conditions, the presynaptic neurons discharged
in the range of 15 to 50 Hz and the discharge of the
postsynaptic neuron (fpost) was in the range of 10 to
60 Hz. The relationship betweenfpost and fexc was
approximately linear. In the following text, we used
fpostas an index of presynaptic stimulation since it was
more meaningful thanfexc.

The postsynaptic neuron discharged with a progres-
sively longer latency ashini increased (Fig. 9B). The
instantaneous firing frequency of this neuron increased
exponentially with the time constantτ f (Fig. 9B, in-
set). The mean latency-to-first-spike decreased with
fpost (that is, the stimulation frequency) (Fig. 9C) and
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Figure 9. A: The convergent network. Same symbols as in Fig. 7A.B: Discharge of the postsynaptic neuron in response to 40 presynaptic
inputs for differenthini (from top to bottom, 0.2, 0.4, 0.6;fexc = 9 kHz; finh = 4 kHz). Inset is the instantaneous frequency (Hz) of the
corresponding discharge over 15 s.C: Mean latency (20 replications) versusfpost for differenthini (star: 0.6; closed dot: 0.5; plus: 0.4; open
dot: 0.3). D: Mean latency (20 replications) versushini for different fpost (from top to bottom, 20, 37, 49, 60 Hz—that is,fexc= 8.5, 9, 9.5,
10 kHz). E: Coefficient of variation of the latency versusfpost for differenthini (same symbols as in C).

increased withhini (Fig. 9D). These trends were simi-
lar to those foundin vitro (Figs. 9C and 3A, Figs. 9D
and 3B). Since there is a stochastic component in the
behavior of the network, the latencies can vary from
trial to trial. However, the variability of the latency

(CV) was dramatically lower than for a single neuron
(Fig. 9E).

These results demonstrate that the postsynaptic neu-
ron preserves an ordered relationship between the la-
tency andhini and the stimulation frequency. Thus,
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although the presynaptic neurons discharged with-
out delay and had a highly variable instantaneous
frequency (see above), the decoding neuron was able to
suppress noise and to recover the two discharge proper-
ties due to Ks conductance: latency-to-first-spike and
exponentially increasing instantaneous frequency fol-
lowing the delay. Generally, the results obtained for a
population depend on the model of the synaptic inputs
in the same way as the results obtained for a single neu-
ron (see above). Thus, Ks inactivation is suitable for
producing reliable latency within neuronal populations,
although our results provide only a rough estimate of
the size of the appropriate populations.

The presence of synaptic interactions within a pop-
ulation should influence the time course of frequency
changes. We explored this using the same set of 40 neu-
rons assembled in a fully connected excitatory network
(recurrent network; Fig. 10A). Interneuronal synaptic
currents had an instantaneous rise and an exponential
decay (3 ms time constant). Synaptic conductance was
ḡsyn= 0.1 mS.cm−2 leading to EPSP of 0.5 mV at rest-
ing potential. All the neurons had the same initial dein-
activation level and received individually randomized
stochastic excitatory inputs at frequencyfexc. The same
set of inputs was used for each simulation. We com-
pared the influence of the “feedforward” stimulation
(excitatory input at frequencyfexc) and the “lateral”
stimulation due to the recurrent connections. For this
we contrasted the pattern of frequency increase dur-
ing pure feedforward processing (Fig. 10B) and feed-
forward + lateral processing for the same steady state
(Fig. 10C). In the latter case the frequency increase de-
parted from the exponential trend with time constant
τ f due to Ks inactivation and became linear for 1-2τ f .
Lateral interactions also allowed frequency increases
at variable rates asfexc increased (Fig. 10C). This was
not seenin vitro (see Fig. 4B), or with pure feedfor-
ward processing (Fig. 10B). The analytical model in
Appendix C (Eq. (7)) illustrates the qualitative differ-
ence between the dynamics of frequency increase in
the recurrent and nonrecurrent networks (Fig. 10D).
Furthermore, in the presence of lateral interactions a
smaller amount of injected current is required to ob-
tain the same steady-state frequency. Thus, the initial
frequencies are smaller and vary in a smaller range in
the recurrent case than in the nonrecurrent case for the
same steady-state frequencies (Fig. 10D). We calcu-
lated the slope of frequency increase in the first 4 sec-
onds of the discharge as a function offexcandḡsyn. The
slope increased linearly with the stimulation frequency

(Fig. 10E) and nonlinearly with the synaptic conduc-
tance (Fig. 10F). These results are well accounted for
by an analytical steady-state frequency approximation
of the network (Appendix C).

Discussion

There are three main findings. First, a slowly inacti-
vating potassium conductance can shape the discharge
behavior of a neuronin vitro according to simple laws
that specify the latency-to-first-spike and the pattern
of frequency change (ramp firing) as a function of the
biophysical characteristics of the neuron, the current
state of the neuron (initial deinactivation) and the in-
jected current. Second, control of first spike latency
is lost at the single-cell level under random synaptic
stimulation but recovers at the population level. Third,
frequency changes at variable rate are made possible
by the combined action of Ks inactivation and synaptic
interactions in a network.

Effects of Ks Inactivation Under Current Clamp

It has been proposed that Ks conductances influence
the latency-to-first-spike and the pattern of discharge
in many neurons (Byrne et al., 1979; Byrne, 1980;
Getting, 1983; Storm, 1988; Bargas et al., 1989;
Huguenard and Prince, 1991; Spain et al., 1991;
Hammond and Crepel, 1992; Marom and Abbott,
1994; Nisenbaum et al., 1994; Wang and McKinnon,
1995; Turrigiano et al., 1996; Gabel and Nisenbaum,
1998). The present study describes electrophysiolog-
ical properties that result from the presence of Ks
conductance in a biophysical model of a neuron. The
model reproduces most of the properties observed
experimentally and provides new information on the
role of Ks conductance based on a systematic explo-
ration of parameters.

Latency-to-first-spike due to inactivation of the Ks
conductance was reproduced under current clamp in
this model and analyzed as a function of the param-
eters of the model. Simulations first showed that the
latency is a decreasing logarithmic function of the in-
jected current, consistent with the results of Getting
(1983), Lanthorn et al. (1984) and McCormick (1991).
At low initial deinactivation levels, there was delay-to-
firing only over a narrow range of injected currents and
the slope of the relationship is steep (a small change in
current causes a large change in latency). Increasing
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Figure 10. A: The recurrent network. Same symbols as in Fig. 7A.B: Mean network discharge frequency forhini = 0.4 and null synaptic
interactions (from bottom to top,fexc= 2, 2.9, 3.7 kHz). C: Mean network discharge frequency forhini = 0.4 and normal synaptic interactions
(from top to bottomfexc= 1.1, 1.3, 1.5, 1.7 kHz). Bin for mean frequency calculation is 250 ms.D: Mean network discharge frequency obtained
from Eq. (7) in Appendix C. Recurrent (normal lines;g = 0.05; from bottom to top,I = 7.2, 7.32, 7.44, 7.56, 7.68, 7.8) and nonrecurrent (gray
lines; g = 0; I was adjusted to obtain the same steady-state frequencies) cases are shown.E: Slope of frequency increase versusfexc. The
slope was obtained as the best linear fit of the first 4 seconds of discharge. Unbroken line is best linear fit (Eq. (9) in Appendix C).F: Slope of
frequency increase versusḡsyn. Same definition as inE. Unbroken line is best fit toy = (α + βx)/(1+ γ x) (Eq. (9) in Appendix C).

hini decreases this slope and enlarges the domain of in-
puts corresponding to a given range of latencies. Thus a
broader range of inputs can be represented by the same
range of latencies. Latency-to-first-spike is determined

by the time to reach the threshold for discharge. Ac-
cordingly the threshold has a definite influence on la-
tency. Our model neuron has a threshold∼−50 mV
that is within the range of thresholds for a wide
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variety of neurons. Irrespective of the threshold, the
magnitude of the latency effects depends on the pres-
ence of Ks conductance (milliseconds versus seconds;
see Fig. 3A). The latency also increases logarithmi-
cally with hini , in agreement with the observation of
Getting (1983) of an apparent logarithmic dependence
between latency-to-first-spike and prepulse hyperpo-
larization. The variations in latency with Ks maxi-
mal conductance must be considered cautiously, since
a long-lasting large potassium current could reduce
the driving force for K+ ions, which would itself de-
crease the current. This mechanism is not included in
the model, which could explain the discrepancy with
the results of Turrigiano et al. (1996), who reported an
apparently bounded variation of the delay to first spike
with ḡKs.

The whole model was reduced so that Ks inactivation
represented the only dynamical variable to provide a
theoretical description of the effects of Ks inactivation.
Analytical solutions for membrane potential (before
discharge), Ks inactivation and latency-to-first-spike
were obtained in terms of the biophysical parameters
of the model. The reduced model gives results quali-
tatively similar to those obtained by simulation of the
whole model. The analytical formulae reveal that the
Ks conductance replaces the leak conductance to de-
termine the time of the first spike, with two significant
effects. First, proportionality to membrane time con-
stant is replaced by proportionality to the Ks time con-
stant, which explains the long delays-to-firing. Second,
the Ks conductance improves the mapping between in-
jected currents and latencies (see above).

A fraction of Ks current during a ramp is a window
current since the steady-state inactivation at potentials
encountered during the ramp (approximated byhθ in
Appendix A) is substantial in our model. The latency
depends directly onhθ (see Eq. (4)). Therefore latency-
to-first-spike depends not only on the rate of inactiva-
tion of Ks conductance but also on a “noninactivating”
component. We estimated the contribution of this com-
ponent for wide ranges ofI andhini to be up to 30% of
the latency—that is, the latency was reduced by 30%
whenhθ = 0.

Nisenbaum et al. (1994) observed in medium spiny
neurons of the striatum that the slope of the ramp be-
fore the first spike increased with the mean level of
depolarization encountered during the ramp but was in-
dependent of the initial level of inactivation. The same
properties were found in our model. It was also found in
different neurons that the slope of the ramp associated

with Ks increases throughout the delay (Nisenbaum
et al., 1994; Turrigiano et al., 1996). This was not
the case in our model as the slope remained constant
until the very end of the ramp. This difference could
be due to the activation of other subthreshold conduc-
tances during the ramp (such as persistent sodium con-
ductance; see Nisenbaum et al. 1994). It could also
arise from the model of the Ks conductance. For ex-
ample, the Kv1.3 slowly inactivating potassium cur-
rent model (Marom and Levitan, 1994), which has
a state-dependent rather than a voltage-dependent in-
activation process, produces ramps with increasing
slope during the delay (as evidence by unpublished
simulations).

After a possible delay, current injection results in
repetitive firing. The instantaneous frequency of the
discharge is proportional to the instantaneous Ks in-
activation level after a brief transitory period, so that
it increases exponentially from an initial to a steady-
state frequency. This pattern of accelerating discharge
attributed to a Ks conductance has been described in
several experimental preparations (Byrne et al., 1979;
Getting, 1983; Storm, 1988; Spain et al., 1991a;
Marom and Abbott, 1994; Turrigiano et al., 1996).

The initial frequency is approximately constant
when a latency preceded the discharge, regardless of
the injected current and the initial deinactivation. Nu-
merically, this initial frequency appears to be nonzero at
a Hopf bifurcation of the subcritical type (Appendix B).
Thus the discharge has a definite nonzero initial fre-
quency. This indicates that there is no correlation be-
tween the latency-to-first-spike and the following ISIs.
There is a strong correlation between the latency and
the first ISI when the Ks conductance is absent, since
both are correlated with the injected current. Apart
from that, the steady frequency and the initial frequency
for immediate discharges follow classic close-to-linear
relationship to the injected current.

The pattern of accelerating discharge is com-
plementary to the phenomenon of spike frequency
adaptation—that is, a time-dependent decrease in fir-
ing frequency during current clamp due to the gradual
activation of calcium-gated potassium conductances.
These processes can help to set time-varying frequency
patterns with gains in the range∼1 to 5 (present results)
and∼0.2 to 0.9 (Wang, 1998). However, these regu-
lations rely on very different principles. The former
is mainly a subthreshold time-dependent process that
evolves following the time constant of inactivation of
Ks conductance. The latter is a frequency-dependent
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process and has a complex time course related to the
time constant of decay of intracellular calcium and the
injected current (Wang, 1998).

Effects of Ks Inactivation Under Random
Synaptic Stimulation

Latency-to-first-spike under stochastic synaptic stimu-
lation was determined by the structure of the synaptic
inputs. Latencies are long for both low stimulation fre-
quencies and strongly deinactivated initial states, and
weak input variability. However, early spikes generally
occur due to random fluctuations in membrane poten-
tial close to the action potential threshold, despite the
presence of a strong hyperpolarizing current. Chang-
ing the threshold would change the magnitude of the la-
tency effects but would not reduce its variability. Thus
the latency cannot be used as a reliable indicator of the
initial deinactivation level or the stimulation frequency
in these conditions.

Temporal coding can be obtained by integrating a set
of presynaptic spike trains that do not exhibit latency-
to-first-spike. In this case, the current driving the inte-
grating neuron varies little (approaching current-clamp
conditions) since it averages random activity across
the presynaptic neurons. Proper temporal ordering of
events coded by the control parameters (deinactivation
level and stimulation frequency) results from the aver-
aging of small neuronal populations (40 neurons). Al-
though the size of the population depends of the model
of synaptic input, it gives a plausible order size. Ensem-
bles of about the same size faithfully encode the spatio
temporal characteristics of movement (Georgopoulos
et al., 1989; Schwartz, 1993). Population decoding is a
general tool for visualizing ongoing neural processing,
although the resulting computation need not be explicit
(Georgopoulos, 1995). In the present case, latency can
be implicitly represented as an ensemble activity or ex-
plicitly transmitted to target structures as a discharge.

Synaptically driven model neurons display ramp fir-
ing patterns. Firing frequency increases exponentially
from an initial to a steady-state frequency with a time
constant of∼2.6 s—that is, approximately the time
constant of Ks inactivation at mean interspike inter-
val potential. The steady-state frequency is determined
by the excitatory input frequency (fexc) and varies lin-
early with it. The initial frequency increases linearly
with fexc and decreases linearly withhini . Arbitrarily
low initial frequencies were obtainedin vivo, unlike
in current-clamp. Therefore, ramp firing patterns with

any initial and steady frequency can be produced by
the appropriate choice offexcandhini . A constant ramp
gain (defined byhini) can be obtained at different out-
put frequencies by varyingfexc. Independent control
of gain and steady frequency is a feature ofin vivo
conditions but notin vitro.

Deinactivation of Ks Conductance

The discharge properties described in this study crit-
ically rely on the ease with which the Ks con-
ductance deinactivates. Hence, the question arises
whether enough deinactivation can be produced un-
der the electrophysiological conditions encounteredin
vivo. GABAergic synapses have reversal potentials of
around−85 mV and give rise to IPSPs that can hy-
perpolarize the membrane to∼−75 mV for one sec-
ond (Avoli, 1986; Howe et al., 1987). According to
the deinactivation model of our Ks conductance, these
conditions could produce initial deinactivation of up to
∼0.5. If we add the constraint that deinactivation is
produced by a phasic signal (such as<500 ms—that
is, short compared to the time course of inactivation),
initial deinactivation can be∼0.4. This level of dein-
activation is sufficient to have a significant effect on
latency-to-first-spike and firing frequency. Thus a tran-
sient inhibitory input can act as a signal to “program”
latency-to-first-spike or a ramp firing pattern.

Functional Significance

Lashley (1951) suggested that the brain encodes serial
order by using a spatial representation. Thus, tempo-
rally spaced sensory experiences are translated into
spatial patterns of brain activity to construct repre-
sentations or concepts. The biophysical basis of this
transformation may rely on slow intrinsic membrane
properties, slow synaptic processes, and short-term
plasticity (Buonomano and Merzenich, 1995). The so-
lution capitalizes on the idea that slow variables can
carry information about past activity and modulate on-
going spatial interactions within a network. The Ks
conductances belong to this family of slow variables
and as such may contribute to temporal-to-spatial en-
coding.

A complementary process is needed to translate spa-
tial patterns of activity into time-varying commands to
control sequential actions. The present results suggest
that slowly inactivating potassium conductances are
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suitable for this task. Since the initial deinactivation
level of a Ks conductance determines the future time-
varying response of a neuron to an injected current, a
spatial distribution of inactivation within a population
translates into a distribution of temporal patterns. This
output distribution faithfully reflects the temporal order
embedded in the spatial input.

Two types of population computation can result from
the action of a Ks conductance. First, coding based on
the order of spike arrival arises when initial deinacti-
vation results in a discharge with a sizeable latency-
to-first-spike. In this case, a transient spatial pattern
of inhibition programs the time of the first spike of
each neuron. This can result in a temporal version of a
“winner-takes-all” process when combined with lateral
inhibition (Fukai, 1995). The presence of a Ks conduc-
tance makes this process reliable underin vivo con-
ditions, which is not the case with “noninactivating”
neurons. There is experimental evidence that latency-
to-first-spike carries a significant fraction of informa-
tion on sensory stimulation in behaving animals (Heller
et al., 1995; Gawne et al., 1996). More generally, the
advantages of coding by the time of spikes have been
advocated in numerous studies (Thorpe and Imbert,
1989) and will not be discussed here. The action of
a Ks conductance may be relevant to obtain a robust
computation based on the time of spikes.

Second, a variety of ramp firing patterns can be
elaborated by programming of a neuronal population.
Inactivation of the Ks conductance controls the rate
of convergence to steady-state discharge behavior in
populations of synaptically connected neurons. Since
steady state is reached within fractions of the neuron’s
membrane time constant (∼5 to 10 ms) in most network
models of spiking neurons (Hopfield and Herz, 1995;
Tsodyks and Sejnowski, 1995; Amit and Brunel, 1997;
but see Lukashin and Georgopoulos, 1994; Hansel and
Sompolinsky, 1996), the action of the Ks conductance
may help explain the slow buildups of neural activity
(0.1 to 10 s), which are ubiquitous in behaving animals.
Spain et al. (1991a) suggested that the ramp firing pat-
terns recorded during force exertion in sensorimotor
neurons could result from a post-hyperpolarization in-
hibition due to a slow potassium conductance. Cheney
and Fetz (1980) described exponentially increasing
patterns of discharge frequency in primate corticomo-
toneurons. We estimate the time constant of increase to
be∼200 to 400 ms, which is close to the time constant
of Ks inactivation in sensorimotor neurons (Spain et al.,
1991b; Foehring and Surmeier, 1993). In the same way,

the action of a Ks conductance could underlie the ramp
patterns observed before significant events and actions
in sensorimotor and cognitive tasks (Apicella et al.,
1992; Quintana and Fuster, 1992). These neuronal ac-
tivities, which signal arrival time, probability of occur-
rence, or the nature of forthcoming events (Vaadia et al.,
1988; Quintana and Fuster, 1992), can be obtained by
an appropriate choice ofhini or injected current (stim-
ulation frequency). For example, the time to reach a
given frequency level in a population of neurons can
be programmed by the intensity of a transient hyper-
polarizing current.

Recurrent networks of “slowly inactivating” neu-
rons are unique in their capacity to increase frequency
at variable rates. This property is partly due to small
variations in initial frequency with stimulation fre-
quency and large variations in steady frequency due
to interneuronal interactions. A gradual buildup of dis-
charge through recurrent connections combines with
slow inactivation to generate an approximately linear
frequency increase over several seconds. The same
behavior was observed in a steady-state frequency
model over a large range of synaptic conductance
(Appendix C). This result indicates that the linearity
of frequency increase is not due to a specific choice of
a synaptic conductance in relation to the parameters of
inactivation but is a general property of the network.
The capacity of a network to generate frequency in-
creases at variable rate suggests that the inactivation of
a Ks conductance may be relevant for decision-making
processes (Hanes and Schall, 1996).

Appendix A. Analytical Study of In Vitro Behavior

We developed an analytical description of the role of
Ks inactivation in the discharge behavior of the neuron.
Three approximations were made: (1) we replaced the
action potential mechanism based on Na and K cur-
rents by a thresholdθ on the voltage (integrate-and-fire
model); (2) since the Ks inactivation gate evolved much
more slowly than the membrane voltage (τ = 20 ms)
and the Ks activation gate (τmKs= 50 ms), we assumed
that the Ks inactivation gate was the only variable driv-
ing the dynamics of the model; (3) we assumed that the
mean potential during the delay before the first spike
was close to the threshold. These approximations are
too rough to obtain an exact fit of the full model. In
particular, the activation of Ks is a complex voltage-
dependent process that is not well described in this
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simplified representation. However, the analytical re-
sults provide qualitative information on the parameters
of the model. In the following, simplified notations
are used:m andh are the Ks gates,m∞, andh∞ the
voltage-dependence functions,τh the time constant of
Ks inactivation andḡ the Ks maximal conductance.
The initial voltage was alwaysVrest=−70 mV and the
initial deinactivation level of Ks conductance washini .

We determined the time course of membrane po-
tential after a rapid variation due to the charge of the
membrane (CdV/dt small compared to other currents)
using

ḡmθh(t)(V(t)− EK )+ gleak(V(t)− Eleak)− I = 0,

wheremθ = m∞(θ). Thus the ramp voltage before the
first spike followed

V(t) = τ(I + ḡmθh(t)EK )+ CEleak

C + τ ḡmθh(t)
(1)

with

h(t) = hθ + [hini − h(θ)]e−t/τhθ , (2)

whereτ = C/gleak, hθ = h∞(θ), andτhθ = τh(θ).
We determined the time of the first spikeTθ such that
V(Tθ ) = θ . From (1), we obtained

h(Tθ ) = τ I − C(θ − Eleak)

τ ḡmθ (θ − EK )
, (3)

and we derived from (2)

T(θ) = −τhθ ln

(
h(Tθ )− hθ
hini − hθ

)
(4)

with

I < [C(θ − Eleak)+ τ ḡmθ (θ − EK )hini ] /τ

I > [C(θ − Eleak)+ τ ḡmθ (θ − EK )hθ ] /τ
(5)

corresponding to 0< Tθ <∞. The thresholdθ was
adjusted to obtain an appropriate range of delays (θ =
−53 mV) and was close to the threshold for action
potential in the full model. The equation of the time-
of-the-first-spike in the absence of Ks conductance
(Lapicque model; Tuckwell, 1988) is shown below for
comparison

Tθ = −τ ln

(
1− C(θ − Eleak)

τ I

)
. (6)

Appendix B. Bifurcation Analysis
of Ks Inactivation

We studied the whole model using the qualitative the-
ory of dynamical systems to describe the role of Ks
inactivation in the transition between resting potential
and repetitive firing. Here the system will be written
as

C
dV

dt
+ ḡNam

3h(V − ENa)+ ḡK n4(V − EK )

+ ḡKsmKshparam(V − EK)+ gleak(V − Eleak)− I = 0

dφ

dt
= φ∞(V)− φ

τφ(V)
φ = m, h, n,mKs.

The bifurcation behavior of the system was deter-
mined as the bifurcation parameter (hparam) was varied
while other parameters andI remained constant. The
stationary solution corresponding to the resting
potential (VRP) was obtained for each input current by
solving

ḡNam(VRP)
3h(VRP)(VRP− ENa)+ ḡK n(VRP)

4

× (VRP− EK )+ ḡKsm(VRP)hparam(VRP− EK )

+ gleak(VRP− Eleak)− I = 0.

The Jacobian matrix of the system was computed, and
its eigenvalues determined the stability of the station-
ary solution. Similar results were observed at all input
currents tested.

An asymptotically stable stationary solution was
found for values ofhparam> hRP, corresponding to rest-
ing potentials of∼−75 mV (hparam= 1) to∼−50 mV
(hparam= hRP). At hparam= hRP, the real part of two
conjugate complex eigenvalues crossed the imaginary
axis, becoming positive ashParam was decreased. This
indicated that an Andronov-Hopf bifurcation occurred
at this point (Kuznetsov, 1995). Numerical simula-
tions showed the appearance of unstable oscillations
around the resting potential forhRP< hparam< hosc,
which strongly suggested that the bifurcation was sub-
critical. Large amplitude stable oscillations (repetitive
spiking) were found forhparam< hosc. Their minimal
frequency, measured athparam= hosc, was nonzero. Un-
stable and stable oscillations coexisted with the stable
resting potential in a small region (hRP< hparam< hosc),
resulting in a domain of bistability. Finally, these re-
sults strongly indicate that the bifurcation can be clas-
sified as a subcritical Andronov-Hopf bifurcation at
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hparam= hRP, accompanied by a saddle-node bifurca-
tion of limit cycle athparam= hosc(turning point; Iooss
and Joseph, 1990).

Appendix C. Analytical Study of Recurrent
Network Behavior

We explored the behavior of the spiking recurrent
network in a simplified model based on frequency
changes. We considered a mean field approximation
of network operations. We assumed that synaptic in-
teractions were much faster than Ks inactivation. We
wrote

f (t) = F(I + g f (t), h(t)),

where f is the mean network frequency,I is a feedfor-
ward current,g represents synaptic coupling between
neurons, and

F(i, h) = α + (β − γ i ) ln h

is the steady frequency curve obtained by curve fitting
from Fig. 8A (α = −3, β = 40.4, γ = 6.1). We
obtained

f (t) = α + (β − γ I ) ln h(t)

1+ γg ln h(t)
, (7)

where the inactivation gateh followed

h(t) = h∞ + (hini − h∞) exp(−t/τh),

whereh∞ is the steady-state value ofh (h∞ = 0.08).
We calculated a first-order approximation of Eq. (7)
for t ¿ τh andγg¿ 1

f (t) = st+ f0 (8)

with

f0 = α + (β − γ I ) ln hini

1+ γg ln hini

and

s= (hini − h∞)(γ I + γg f0β)

hiniτh(1+ γg ln hini)
. (9)

We verified the validity of Eq. (8) numerically. The
frequency deviated from the theoretical frequency (7)
by less than 10% fort ≤ τh for a wide range ofI , hini ,

andg. Equation (9) gives the slope of the frequency
increase as a function of paramaters of the model. In
particular, it shows that the slope increases linearly with
I and nonlinearly withg (note that ln(hini) < 0).
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