292 research outputs found
A Universal Point Set for 2-Outerplanar Graphs
A point set is universal for a class if
every graph of has a planar straight-line embedding on . It is
well-known that the integer grid is a quadratic-size universal point set for
planar graphs, while the existence of a sub-quadratic universal point set for
them is one of the most fascinating open problems in Graph Drawing. Motivated
by the fact that outerplanarity is a key property for the existence of small
universal point sets, we study 2-outerplanar graphs and provide for them a
universal point set of size .Comment: 23 pages, 11 figures, conference version at GD 201
Reducing the size and number of linear programs in a dynamic Gr\"obner basis algorithm
The dynamic algorithm to compute a Gr\"obner basis is nearly twenty years
old, yet it seems to have arrived stillborn; aside from two initial
publications, there have been no published followups. One reason for this may
be that, at first glance, the added overhead seems to outweigh the benefit; the
algorithm must solve many linear programs with many linear constraints. This
paper describes two methods of reducing the cost substantially, answering the
problem effectively.Comment: 11 figures, of which half are algorithms; submitted to journal for
refereeing, December 201
Upward Point-Set Embeddability
We study the problem of Upward Point-Set Embeddability, that is the problem
of deciding whether a given upward planar digraph has an upward planar
embedding into a point set . We show that any switch tree admits an upward
planar straight-line embedding into any convex point set. For the class of
-switch trees, that is a generalization of switch trees (according to this
definition a switch tree is a -switch tree), we show that not every
-switch tree admits an upward planar straight-line embedding into any convex
point set, for any . Finally we show that the problem of Upward
Point-Set Embeddability is NP-complete
Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving
We derive efficient algorithms for coarse approximation of algebraic
hypersurfaces, useful for estimating the distance between an input polynomial
zero set and a given query point. Our methods work best on sparse polynomials
of high degree (in any number of variables) but are nevertheless completely
general. The underlying ideas, which we take the time to describe in an
elementary way, come from tropical geometry. We thus reduce a hard algebraic
problem to high-precision linear optimization, proving new upper and lower
complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding
Superpatterns and Universal Point Sets
An old open problem in graph drawing asks for the size of a universal point
set, a set of points that can be used as vertices for straight-line drawings of
all n-vertex planar graphs. We connect this problem to the theory of
permutation patterns, where another open problem concerns the size of
superpatterns, permutations that contain all patterns of a given size. We
generalize superpatterns to classes of permutations determined by forbidden
patterns, and we construct superpatterns of size n^2/4 + Theta(n) for the
213-avoiding permutations, half the size of known superpatterns for
unconstrained permutations. We use our superpatterns to construct universal
point sets of size n^2/4 - Theta(n), smaller than the previous bound by a 9/16
factor. We prove that every proper subclass of the 213-avoiding permutations
has superpatterns of size O(n log^O(1) n), which we use to prove that the
planar graphs of bounded pathwidth have near-linear universal point sets.Comment: GD 2013 special issue of JGA
Drawing Arrangement Graphs In Small Grids, Or How To Play Planarity
We describe a linear-time algorithm that finds a planar drawing of every
graph of a simple line or pseudoline arrangement within a grid of area
O(n^{7/6}). No known input causes our algorithm to use area
\Omega(n^{1+\epsilon}) for any \epsilon>0; finding such an input would
represent significant progress on the famous k-set problem from discrete
geometry. Drawing line arrangement graphs is the main task in the Planarity
puzzle.Comment: 12 pages, 8 figures. To appear at 21st Int. Symp. Graph Drawing,
Bordeaux, 201
Some families of density matrices for which separability is easily tested
We reconsider density matrices of graphs as defined in [quant-ph/0406165].
The density matrix of a graph is the combinatorial laplacian of the graph
normalized to have unit trace. We describe a simple combinatorial condition
(the "degree condition") to test separability of density matrices of graphs.
The condition is directly related to the PPT-criterion. We prove that the
degree condition is necessary for separability and we conjecture that it is
also sufficient. We prove special cases of the conjecture involving nearest
point graphs and perfect matchings. We observe that the degree condition
appears to have value beyond density matrices of graphs. In fact, we point out
that circulant density matrices and other matrices constructed from groups
always satisfy the condition and indeed are separable with respect to any
split. The paper isolates a number of problems and delineates further
generalizations.Comment: 14 pages, 4 figure
Embedding Four-directional Paths on Convex Point Sets
A directed path whose edges are assigned labels "up", "down", "right", or
"left" is called \emph{four-directional}, and \emph{three-directional} if at
most three out of the four labels are used. A \emph{direction-consistent
embedding} of an \mbox{-vertex} four-directional path on a set of
points in the plane is a straight-line drawing of where each vertex of
is mapped to a distinct point of and every edge points to the direction
specified by its label. We study planar direction-consistent embeddings of
three- and four-directional paths and provide a complete picture of the problem
for convex point sets.Comment: 11 pages, full conference version including all proof
Approximating the Maximum Overlap of Polygons under Translation
Let and be two simple polygons in the plane of total complexity ,
each of which can be decomposed into at most convex parts. We present an
-approximation algorithm, for finding the translation of ,
which maximizes its area of overlap with . Our algorithm runs in
time, where is a constant that depends only on and .
This suggest that for polygons that are "close" to being convex, the problem
can be solved (approximately), in near linear time
Polyhedra in loop quantum gravity
Interwiners are the building blocks of spin-network states. The space of
intertwiners is the quantization of a classical symplectic manifold introduced
by Kapovich and Millson. Here we show that a theorem by Minkowski allows us to
interpret generic configurations in this space as bounded convex polyhedra in
Euclidean space: a polyhedron is uniquely described by the areas and normals to
its faces. We provide a reconstruction of the geometry of the polyhedron: we
give formulas for the edge lengths, the volume and the adjacency of its faces.
At the quantum level, this correspondence allows us to identify an intertwiner
with the state of a quantum polyhedron, thus generalizing the notion of quantum
tetrahedron familiar in the loop quantum gravity literature. Moreover, coherent
intertwiners result to be peaked on the classical geometry of polyhedra. We
discuss the relevance of this result for loop quantum gravity. In particular,
coherent spin-network states with nodes of arbitrary valence represent a
collection of semiclassical polyhedra. Furthermore, we introduce an operator
that measures the volume of a quantum polyhedron and examine its relation with
the standard volume operator of loop quantum gravity. We also comment on the
semiclassical limit of spinfoams with non-simplicial graphs.Comment: 32 pages, many figures. v2 minor correction
- …
