We reconsider density matrices of graphs as defined in [quant-ph/0406165].
The density matrix of a graph is the combinatorial laplacian of the graph
normalized to have unit trace. We describe a simple combinatorial condition
(the "degree condition") to test separability of density matrices of graphs.
The condition is directly related to the PPT-criterion. We prove that the
degree condition is necessary for separability and we conjecture that it is
also sufficient. We prove special cases of the conjecture involving nearest
point graphs and perfect matchings. We observe that the degree condition
appears to have value beyond density matrices of graphs. In fact, we point out
that circulant density matrices and other matrices constructed from groups
always satisfy the condition and indeed are separable with respect to any
split. The paper isolates a number of problems and delineates further
generalizations.Comment: 14 pages, 4 figure