996 research outputs found

    An Enhanced Perturbational Study on Spectral Properties of the Anderson Model

    Full text link
    The infinite-UU single impurity Anderson model for rare earth alloys is examined with a new set of self-consistent coupled integral equations, which can be embedded in the large NN expansion scheme (NN is the local spin degeneracy). The finite temperature impurity density of states (DOS) and the spin-fluctuation spectra are calculated exactly up to the order O(1/N2)O(1/N^2). The presented conserving approximation goes well beyond the 1/N1/N-approximation ({\em NCA}) and maintains local Fermi-liquid properties down to very low temperatures. The position of the low lying Abrikosov-Suhl resonance (ASR) in the impurity DOS is in accordance with Friedel's sum rule. For N=2N=2 its shift toward the chemical potential, compared to the {\em NCA}, can be traced back to the influence of the vertex corrections. The width and height of the ASR is governed by the universal low temperature energy scale TKT_K. Temperature and degeneracy NN-dependence of the static magnetic susceptibility is found in excellent agreement with the Bethe-Ansatz results. Threshold exponents of the local propagators are discussed. Resonant level regime (N=1N=1) and intermediate valence regime (∣ϵf∣<Δ|\epsilon_f| <\Delta) of the model are thoroughly investigated as a critical test of the quality of the approximation. Some applications to the Anderson lattice model are pointed out.Comment: 19 pages, ReVTeX, no figures. 17 Postscript figures available on the WWW at http://spy.fkp.physik.th-darmstadt.de/~frithjof

    Possible Relevance of Odd Frequency Pairing to Heavy Fermion Superconductivity

    Full text link
    What is the character of the gapless quasiparticles in heavy fermion superconductors (HFSC)? We discuss an odd-frequency pairing interpretation of HFSC which leads to a two component model for the quasiparticle excitations. In this picture, line zeroes of unpaired electrons may coexist with gapless surfaces of paired electrons, with vanishing spin and charge coherence factors

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Investigation of on-site inter-orbital single electron hoppings in general multi-orbital systems

    Full text link
    A general multi-orbital Hubbard model, which includes on-site inter-orbital electron hoppings, is introduced and studied. It is shown that the on-site inter-orbital single electron hopping is one of the most basic interactions. Two electron spin-flip and pair-hoppings are shown to be correlation effects of higher order than the on-site inter-orbital single hopping. It is shown how the double and higher hopping interactions can be well-defined for arbitrary systems. The two-orbital Hubbard model is studied numerically to demonstrate the influence of the single electron hopping effect, leading to a change of the shape of the bands and a shrinking of the difference between the two bands. Inclusion of the on-site inter-orbital hopping suppresses the so-called orbital-selective Mott transition.Comment: 5 pages, 3 figure

    "Exhaustion" Physics in the Periodic Anderson Model using Iterated Perturbation Theory

    Get PDF
    We discuss the "exhaustion" problem in the context of the Periodic Anderson Model using Iterated Perturbation Theory(IPT) within the Dynamical Mean Field Theory. We find that, despite its limitations, IPT captures the exhaustion physics, which manifests itself as a dramatic, strongly energy dependent suppression of the effective Anderson impurity problem. As a consequence, low energy scales in the lattice case are strongly suppressed compared to the "Kondo scale" in the single-impurity picture. The IPT results are in qualitative agreement with recent Quantum Monte Carlo results for the same problem.Comment: 13 preprint pages including 1 table and 4 eps figures, replaced by revised version, accepted for publication in Europhysics Letters, added references and conten

    Kinks in the electronic dispersion of the Hubbard model away from half filling

    Full text link
    We study kinks in the electronic dispersion of a generic strongly correlated system by dynamic mean-field theory (DMFT). The focus is on doped systems away from particle-hole symmetry where valence fluctuations matter potentially. Three different algorithms are compared to asses their strengths and weaknesses, as well as to clearly distinguish physical features from algorithmic artifacts. Our findings extend a view previously established for half-filled systems where kinks reflect the coupling of the fermionic quasiparticles to emergent collective modes, which are identified here as spin fluctuations. Kinks are observed when strong spin fluctuations are present and, additionally, a separation of energy scales for spin and charge excitations exists. Both criteria are met by strongly correlated systems close to a Mott-insulator transition. The energies of the kinks and their doping dependence fit well to the kinks in the cuprates, which is surprising in view of the spatial correlations neglected by DMFT.Comment: 13 pages, 15 figure

    Complete plastid genomes from \u3ci\u3eOphioglossum californicum, Psilotum nudum,\u3c/i\u3e and \u3ci\u3eEquisetum hyemale\u3c/i\u3e reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    Background: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution

    Inelastic Neutron scattering in CeSi_{2-x}Ga_x ferromagnetic Kondo lattice compounds

    Full text link
    Inelastic neutron scattering investigation on ferromagnetic Kondo lattice compounds belonging to CeSi_{2-x}Ga_{x}, x = 0.7, 1.0 and 1.3, system is reported. The thermal evolution of the quasielastic response shows that the Kondo interactions dominate over the RKKY interactions with increase in Ga concentration from 0.7 to 1.3. This is related to the increase in k-f hybridization with increasing Ga concentration. The high energy response indicates the ground state to be split by crystal field in all three compounds. Using the experimental results we have calculated the crystal field parameters in all three compounds studied here.Comment: 12 Pages Revtex, 2 eps figures

    Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    BACKGROUND: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. RESULTS: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. CONCLUSIONS: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution

    Complete plastid genomes from \u3ci\u3eOphioglossum californicum, Psilotum nudum,\u3c/i\u3e and \u3ci\u3eEquisetum hyemale\u3c/i\u3e reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes

    Get PDF
    Background: Plastid genome structure and content is remarkably conserved in land plants. This widespread conservation has facilitated taxon-rich phylogenetic analyses that have resolved organismal relationships among many land plant groups. However, the relationships among major fern lineages, especially the placement of Equisetales, remain enigmatic. Results: In order to understand the evolution of plastid genomes and to establish phylogenetic relationships among ferns, we sequenced the plastid genomes from three early diverging species: Equisetum hyemale (Equisetales), Ophioglossum californicum (Ophioglossales), and Psilotum nudum (Psilotales). A comparison of fern plastid genomes showed that some lineages have retained inverted repeat (IR) boundaries originating from the common ancestor of land plants, while other lineages have experienced multiple IR changes including expansions and inversions. Genome content has remained stable throughout ferns, except for a few lineage-specific losses of genes and introns. Notably, the losses of the rps16 gene and the rps12i346 intron are shared among Psilotales, Ophioglossales, and Equisetales, while the gain of a mitochondrial atp1 intron is shared between Marattiales and Polypodiopsida. These genomic structural changes support the placement of Equisetales as sister to Ophioglossales + Psilotales and Marattiales as sister to Polypodiopsida. This result is augmented by some molecular phylogenetic analyses that recover the same relationships, whereas others suggest a relationship between Equisetales and Polypodiopsida. Conclusions: Although molecular analyses were inconsistent with respect to the position of Marattiales and Equisetales, several genomic structural changes have for the first time provided a clear placement of these lineages within the ferns. These results further demonstrate the power of using rare genomic structural changes in cases where molecular data fail to provide strong phylogenetic resolution
    • …
    corecore