143 research outputs found

    Systematic Mutational Analysis of the Intracellular Regions of Yeast Gap1 Permease

    Get PDF
    The yeast general amino acid permease Gap1 is a convenient model for studying the intracellular trafficking of membrane proteins. Present at the plasma membrane when the nitrogen source is poor, it undergoes ubiquitin-dependent endocytosis and degradation upon addition of a good nitrogen source, e.g. ammonium. It comprises 12 transmembrane domains (TM) flanked by cytosol-facing N- and C-terminal tails (NT, CT). The NT of Gap1 contains the acceptor lysines for ubiquitylation and its CT includes a sequence essential to exit from the endoplasmic reticulum (ER).Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Genome-Wide Analysis of Nucleotide-Level Variation in Commonly Used Saccharomyces cerevisiae Strains

    Get PDF
    Ten years have passed since the genome of Saccharomyces cerevisiae–more precisely, the S288c strain–was completely sequenced. However, experimental work in yeast is commonly performed using strains that are of unknown genetic relationship to S288c. Here, we characterized the nucleotide-level similarity between S288c and seven commonly used lab strains (A364A, W303, FL100, CEN.PK, ∑1278b, SK1 and BY4716) using 25mer oligonucleotide microarrays that provide complete and redundant coverage of the ∼12 Mb Saccharomyces cerevisiae genome. Using these data, we assessed the frequency and distribution of nucleotide variation in comparison to the sequenced reference genome. These data allow us to infer the relationships between experimentally important strains of yeast and provide insight for experimental designs that are sensitive to sequence variation. We propose a rational approach for near complete sequencing of strains related to the reference using these data and directed re-sequencing. These data and new visualization tools are accessible online in a new resource: the Yeast SNPs Browser (YSB; http://gbrowse.princeton.edu/cgi-bin/gbrowse/yeast_strains_snps) that is available to all researchers

    Multicopy plasmid integration in Komagataella phaffii mediated by a defective auxotrophic marker

    Get PDF
    Background: A commonly used approach to improve recombinant protein production is to increase the levels of expression by providing extra-copies of a heterologous gene. In Komagataella phaffii (Pichia pastoris) this is usually accomplished by transforming cells with an expression vector carrying a drug resistance marker following a screening for multicopy clones on plates with increasingly higher concentrations of an antibiotic. Alternatively, defective auxotrophic markers can be used for the same purpose. These markers are generally transcriptionally impaired genes lacking most of the promoter region. Among the defective markers commonly used in Saccharomyces cerevisiae is leu2-d, an allele of LEU2 which is involved in leucine metabolism. Cells transformed with this marker can recover prototrophy when they carry multiple copies of leu2-d in order to compensate the poor transcription from this defective allele. Results: A K. phaffii strain auxotrophic for leucine (M12) was constructed by disrupting endogenous LEU2. The resulting strain was successfully transformed with a vector carrying leu2-d and an EGFP (enhanced green fluorescent protein) reporter gene. Vector copy numbers were determined from selected clones which grew to different colony sizes on transformation plates. A direct correlation was observed between colony size, number of integrated vectors and EGFP production. By using this approach we were able to isolate genetically stable clones bearing as many as 20 integrated copies of the vector and with no significant effects on cell growth. Conclusions: In this work we have successfully developed a genetic system based on a defective auxotrophic which can be applied to improve heterologous protein production in K. phaffii. The system comprises a K. phaffii leu2 strain and an expression vector carrying the defective leu2-d marker which allowed the isolation of multicopy clones after a single transformation step. Because a linear correlation was observed between copy number and heterologous protein production, this system may provide a simple approach to improve recombinant protein productivity in K. phaffii

    Propagation of uncertainty in a rotating pipe mechanism to generate an impinging swirling jet flow for heat transfer from a flat plate

    Get PDF
    In Computational Fluid Dynamics (CFD) studies composed of the coupling of different simulations, the uncertainty in one stage may be propagated to the following stage and affect the accuracy of the prediction. In this paper, a framework for uncertainty quantification in the computational heat transfer by forced convection is applied to the two-step simulation of the mechanical design of a swirling jet flow generated by a rotating pipe (Simulation 1) impinging on a flat plate (Simulation 2). This is the first probabilistic uncertainty analysis on computational heat transfer by impinging jets in the literature. The conclusion drawn from the analysis of this frequent engineering application is that the simulated system does not exhibit a significant sensitivity to stochastic variations of model input parameters, over the tested uncertainty ranges. Additionally, a set of non-linear regression models for the stochastic velocity and turbulent profiles for the pipe nozzle are created and tested, since impinging jets for heat transfer at Reynolds number of Re = 23000 are very frequent in the literature, but stochastic inlet conditions have never been provided. Numerical results demonstrate a negligible difference in the predicted convective heat transfer with respect to the use of the profiles simulated via CFD. These suggested surrogate models can be directly embedded onto other engineering applications (e.g. arrays of jets, jet flows impinging on plates with different shapes, inlet piping in combustion, chemical mixing, etc.) in which a realistic swirling flow under uncertainty can be of interest

    Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae: cloning of the PUT4 gene and study of PUT4 RNA levels in wild-type and mutant strains.

    Full text link
    The proline permease gene PUT4 has been cloned. Nitrogen-source regulation ('ammonia sensitivity') of this and at least two other amino-acid permeases is believed to occur at two distinct levels, i.e. permease synthesis and permease activity. Therefore, PUT4 transcription/messenger stability was examined in the ammonia- and proline-grown wild type as well as in mutant strains supposedly affected at only one or at both of these levels. We report transcript-level repression of proline permease synthesis in ammonia-grown cells. Repression is lifted at this level in gdhCR, gln1(ts) and gdhA mutants which exhibit pleiotropically derepressed permease and catabolic enzyme activities. On the other hand, the npi1 and npi2 mutations, formerly called mut2 and mut4, relieve an inactivation process which seems only to affect permeases. These mutations do not affect the detected PUT4 RNA level. The only known positive factor in proline permease regulation, the nitrogen permease reactivator protein Npr1, is believed to counteract the inactivation process on derepressing media. This protein appears to have an additional, indirect effect on PUT4 transcription/messenger stability: it would actually mediate repression via its activating effect on ammonia uptake.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore