74 research outputs found

    ANTIBACTERIAL ACTIVITY OF SYNTHESIZED SILVER NANOPARTICLES BY SIMAROUBAGLAUCA AGAINST PATHOGENIC BACTERIA

    Get PDF
    Objective: The present study outline the plant-mediated synthesis of silver nanoparticles (AgNPs) using leaf extract Simaroubaglauca, which act as both reducing and stabilizing agent.Methods: Formation of silver nanoparticles was confirmed by primarily by Ultraviolet/visible spectroscopy. X-ray diffraction studies revealed the crystallinity of the nanoparticles. The scanning electron microscopy was carried out to determine the mean particle size, as well as the morphology of the NPs and the composition of elements, was studied with Energy Dispersive X-ray analysis (EDS).Results: The silver nanoparticles were spherical in shape with a mean size of 23 nm. The EDS showed strong optical absorption peak at 3keV and it was confirmed the formation of AgNPs. The synthesised AgNPs further utilized for the evaluation of antibacterial activity and shown significant antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Enterobacter and Klebsiella pneumonia at 50 µg/ml and 100µg/ml concentrations.Conclusion: The synthesised silver nanoparticles have been characterised by UV-vis, SEM-EDAX and XRD to determine the sizes and shapes of the silver nanoparticles

    Breeding banana (Musa spp.) for drought tolerance: A review

    Get PDF
    Drought is a major abiotic stress affecting banana production worldwide, leading to yield losses of up to 65%. Consequently, numerous efforts to understand and mitigate drought effects that include developing tolerant crop varieties are ongoing in several banana breeding programmes. The breeding efforts, however, have been greatly slowed down by inherent banana problems (polyploidy and male or female sterility) and complexity of drought tolerance (reportedly controlled by several genes). This review summarizes the pertinent research findings on water requirements of banana for its proper growth and productivity, symptoms of drought‐sensitive varieties and field management strategies to cope with drought stress. The coping strategies deployed by resistant cultivars include high assimilation rates and water retention capacity as well as minor losses in leaf area and gaseous exchange. Reduced bunch weight, leaf chlorosis, wilting and strangled birth are underlined to be directly associated with drought susceptibility. Integration of conventional, molecular breeding and biotechnological tools as well as exploitation of the existing banana genetic diversity presents a huge opportunity for successful banana improvement

    Effect of exposure to sublethal concentrations of sodium cyanide on the carbohydrate metabolism of the Indian Major Carp Labeo rohita (Hamilton, 1822)

    Full text link
    Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L) for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH), succinate dehydrogenase (SDH), glucose-6-phosphate dehydrogenase (G6PDH), phosphorylase, alkaline phosphatase (ALP), acid phosphatase (AcP) were assessed in different tissues (liver, muscle and gills). Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05) time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita

    Endophytic Fungi as Novel Resources of natural Therapeutics

    Full text link

    Antimicrobial, antioxidant and in vitro anti-inflammatory activity and phytochemical screening of Crotalaria pallida Aiton

    No full text
    The antimicrobial, antioxidant and anti-inflammatory activities, lipoxygenase, xanthine oxidase (XO), acetylcholinesterase activities and phenolic contents of different solvent extracts (ethanol, ethyl acetate, chloroform, petroleum ether and water) of Crotalaria pallida were evaluated using in vitro standard methods. These solvent extracts were most potent inhibiting all isolates with different zones of inhibition. The maximum inhibition of bacteria and fungi was observed from ethanol extract. The minimum microbial concentration (MMC) of the active extract was observed from ethanol, petroleum ether and ethyl acetate ranged from 0.3 to 3.2 mg/ml for the sensitive bacteria. In case of fungi, the minimum inhibitory concentration (MIC) of the active extracts ranged from 0.6 to 4.0 mg/ml. These data suggest that the C. pallida extracts analyzed are potential antimicrobial candidates with a broad range of activity. Phytochemical analysis was conducted to all the solvent extracts to their constituents. The level of total phenol, alkaloids, terpenoids, saponins, phenols, steroids and tannins from ethanol, ethyl acetate and petroleum ether extracts were higher. The antioxidant activities of different solvent extracts of C. pallida were determined by 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and ferrous reducing antioxidant property (FRAP) methods. Ascorbic acid and butylated hydroxytoluene (BHT) were used as standard for antioxidant activity. The ethanol, ethyl acetate and petroleum ether extracts possessed strong scavenging activity in both DPPH and FRAP methods. The ethanol, ethyl acetate and petroleum ether had showed free radical inhibition of 88, 72 and 73 and 3617.89 +/- 0.03, 2189.33 +/- 0.03 and 1133.26 +/- 0.01, respectively. The in vitro anti-inflammatory activities were evaluated using albumin denaturation, membrane stabilization and proteinase inhibitory activities using all the solvent extracts. The ethanol, ethyl acetate and petroleum ether showed activity by inhibiting the heat induced albumin denaturation and red blood cells membrane stabilization with 83.17, 71.33 and 58.14 and 68.21, 61.44 and 60.72 g/ml, respectively. The proteinase activity was significantly inhibited by the ethanol (82.53), ethyl acetate 74.31) and petroleum ether (62.92) g/ml. Aspirin was used as standard drug for the study of anti-inflammatory activity. In addition, the ethanol, ethyl acetate and petroleum ether extracts showed anti-lipoxygenase activity and they also exhibited a moderate xanthine oxidase and acetylcholinesterase inhibitory activity
    corecore