13 research outputs found

    cGMP becomes a drug target

    Get PDF
    Cyclic guanosine 3′,5′-monophosphate (cGMP) serves as a second messenger molecule, which regulates pleiotropic cellular functions in health and disease. cGMP is generated by particulate or soluble guanylyl cyclases upon stimulation with natriuretic peptides or nitric oxide, respectively. Furthermore, the cGMP concentration is modulated by cGMP-degrading phosphodiesterases. Several targets of cGMP are utilized to effect its various cellular functions. These effector molecules comprise cGMP-dependent protein kinases, ion channels, and phosphodiesterases. During the last decade, it emerged that cGMP is a novel drug target for the treatment of pulmonary and cardiovascular disorders. In this respect, several drugs were developed, which are now in clinical phase studies for, e.g., pulmonary hypertension or cardiovascular diseases. These new drugs act NO-independently with/without heme on soluble guanylyl cyclases or induce subtypes of particular guanylyl cyclases and thereby lead to new therapeutic concepts and horizons. In this regard, the fifth cGMP meeting held in June 2011 in Halle, Germany, comprised the new therapeutic challenges with the novel functional and structural concepts of cGMP generating and effector molecules. This report summarizes the new data on molecular mechanisms, (patho)physiological relevance, and therapeutic potentials of the cGMP signaling system that were presented at this meeting

    p57kip2 is dynamically regulated in experimental autoimmune encephalomyelitis and interferes with oligodendroglial maturation

    No full text
    The mechanisms preventing efficient remyelination in the adult mammalian central nervous system after demyelinating inflammatory diseases, such as multiple sclerosis, are largely unknown. Partial remyelination occurs in early disease stages, but repair capacity diminishes over time and with disease progression. We describe a potent candidate for the negative regulation of oligodendroglial differentiation that may underlie failure to remyelinate. The p57kip2 gene is dynamically regulated in the spinal cord during MOG-induced experimental autoimmune encephalomyelitis. Transient down-regulation indicated that it is a negative regulator of post-mitotic oligodendroglial differentiation. We then applied short hairpin RNA-mediated gene suppression to cultured oligodendroglial precursor cells and demonstrated that down-regulation of p57kip2 accelerates morphological maturation and promotes myelin expression. We also provide evidence that p57kip2 interacts with LIMK-1, implying that p57kip2 affects cytoskeletal dynamics during oligodendroglial maturation. These data suggest that sustained down-regulation of p57kip2 is important for oligodendroglial maturation and open perspectives for future therapeutic approaches to overcome the endogenous remyelination blockade in multiple sclerosis

    Inhibition of astroglial NF-κB enhances oligodendrogenesis following spinal cord injury.

    Get PDF
    BACKGROUND: Astrocytes are taking the center stage in neurotrauma and neurological diseases as they appear to play a dominant role in the inflammatory processes associated with these conditions. Previously, we reported that inhibiting NF-κB activation in astrocytes, using a transgenic mouse model (GFAP-IκBα-dn mice), results in improved functional recovery, increased white matter preservation and axonal sparing following spinal cord injury (SCI). In the present study, we sought to determine whether this improvement, due to inhibiting NF-κB activation in astrocytes, could be the result of enhanced oligodendrogenesis in our transgenic mice. METHODS: To assess oligodendrogenesis in GFAP-IκBα-dn compared to wild-type (WT) littermate mice following SCI, we used bromodeoxyuridine labeling along with cell-specific immuno-histochemistry, confocal microscopy and quantitative cell counts. To further gain insight into the underlying molecular mechanisms leading to increased white matter, we performed a microarray analysis in naïve and 3 days, 3 and 6 weeks following SCI in GFAP-IκBα-dn and WT littermate mice. RESULTS: Inhibition of astroglial NF-κB in GFAP-IκBα-dn mice resulted in enhanced oligodendrogenesis 6 weeks following SCI and was associated with increased levels of myelin proteolipid protein compared to spinal cord injured WT mice. The microarray data showed a large number of differentially expressed genes involved in inflammatory and immune response between WT and transgenic mice. We did not find any difference in the number of microglia/leukocytes infiltrating the spinal cord but did find differences in their level of expression of toll-like receptor 4. We also found increased expression of the chemokine receptor CXCR4 on oligodendrocyte progenitor cells and mature oligodendrocytes in the transgenic mice. Finally TNF receptor 2 levels were significantly higher in the transgenic mice compared to WT following injury. CONCLUSIONS: These studies suggest that one of the beneficial roles of blocking NF-κB in astrocytes is to promote oligodendrogenesis through alteration of the inflammatory environment
    corecore