162 research outputs found

    Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy

    Get PDF
    Here we report the first evidence for a reversible phase change in an ethanethiol ice prepared under astrochemical conditions. InfraRed (IR) spectroscopy was used to monitor the morphology of the ice using the Ssingle bondH stretching vibration, a characteristic vibration of thiol molecules. The deposited sample was able to switch between amorphous and crystalline phases repeatedly under temperature cycles between 10 K and 130 K with subsequent loss of molecules in every phase change. Such an effect is dependent upon the original thickness of the ice. Further work on quantitative analysis is to be carried out in due course whereas here we are reporting the first results obtained

    Deuterium fractionation across the infrared-dark cloud G034.77−00.55 interacting with the supernova remnant W44

    Get PDF
    Context. Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. / Aims. To test this scenario, we measured the deuteration of N2H+, DfracN2H+ – a well-studied tracer of pre-stellar cores – across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. / Methods. We use N2H+ and N2D+J = 1−0 single pointing observations obtained with the 30m antenna at the Instituto de Radioas-tronomia Millimetrica to infer DfracN2H+ towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, an+d ambient gas. / Results. We find DfracN2H+ in the range 0.03−0.1, which is several orders of magnitude larger than the cosmic D/H ratio (~10−5). The DfracN2H+ across the shock front is enhanced by more than a factor of 2 (DfracN2H+ ~ 0.05 - 0.07) with respect to the ambient gas (≤0.03) and simila+r to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DfracN2H+ ~ 0.01. / Conclusions. We find enhanced deuteration of N2H+ across the region of the shock, that is, at a level that is enhanced with respect to regions of unperturbed gas. It is possible that this has been induced by shock compression, which would then be indirect evidence that the shock is triggering conditions for future star formation. However, since unperturbed dense regions also show elevated levels of deuteration, further, higher-resolution studies are needed to better understand the structure and kinematics of the deuterated material in the shock region; for example, to decipher whether it is still in a relatively diffuse form or is already organised in a population of low-mass pre-stellar cores

    Deuterium Fractionation across the Infrared Dark Cloud G034.77-00.55 interacting with the Supernova Remnant W44

    Get PDF
    Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. To test this scenario, we measure the deuteration of N2H+N_2H^+, DfracN2H+D_{frac}^{N_2H^+}, a well-studied tracer of pre-stellar cores, across the Infrared Dark Cloud (IRDC) G034.77-00.55, known to be experiencing a shock interaction with the SNR W44. We use N2_2H+^+ and N2_2D+^+ J=1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DfracN2H+D_{frac}^{N_2H^+} toward five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump and ambient gas. We find DfracN2H+D_{frac}^{N_2H^+} in the range 0.03-0.1, several orders of magnitude larger than the cosmic D/H ratio (∼\sim10−5^{-5}). Across the shock front, DfracN2H+D_{frac}^{N_2H^+} is enhanced by more than a factor of 2 (DfracN2H+∼D_{frac}^{N_2H^+}\sim0.05-0.07) with respect to the ambient gas (≤\leq0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DfracN2H+D_{frac}^{N_2H^+}}∼\sim0.1. We find enhanced deuteration of N2H+N_2H^+ across the region of the shock, at a level that is enhanced with respect to regions of unperturbed gas. It is possible that this has been induced by shock compression, which would then be indirect evidence that the shock is triggering conditions for future star formation. However, since unperturbed dense regions also show elevated levels of deuteration, further, higher-resolution studies are needed to better understand the structure and kinematics of the deuterated material in the shock region, e.g., if it still in relatively diffuse form or already organised in a population of low-mass pre-stellar cores.Comment: Accepted for publication on A&A; 8 pages, 5 figure

    Anodic Aluminum Oxide Membrane-Assisted Fabrication of β-In2S3Nanowires

    Get PDF
    In this study, β-In2S3nanowires were first synthesized by sulfurizing the pure Indium (In) nanowires in an AAO membrane. As FE-SEM results, β-In2S3nanowires are highly ordered, arranged tightly corresponding to the high porosity of the AAO membrane used. The diameter of the β-In2S3nanowires is about 60 nm with the length of about 6–8 μm. Moreover, the aspect ratio of β-In2S3nanowires is up to 117. An EDS analysis revealed the β-In2S3nanowires with an atomic ratio of nearly S/In = 1.5. X-ray diffraction and corresponding selected area electron diffraction patterns demonstrated that the β-In2S3nanowire is tetragonal polycrystalline. The direct band gap energy (Eg) is 2.40 eV from the optical measurement, and it is reasonable with literature

    Infrared attenuation due to phase change from amorphous to crystalline observed in astrochemical propargyl ether ices

    Get PDF
    Astrochemical ices are known to undergo morphological changes, from amorphous to crystalline, upon warming the ice from lower (10 K) to higher temperatures. Phase changes are mostly identified by the observation of significant changes in the InfraRed (IR) spectrum, where the IR bands that are broad in the amorphous phase are narrower and split when the ice turns crystalline. To-date all the molecules that are studied under astrochemical conditions are observed to follow such a behaviour without significant attenuation in the IR wavelength. However, in this paper we report a new observation when propargyl ether (C3H3OC3H3C_3H_3OC_3H_3) is warmed from the amorphous phase, at 10 K, through the phase transition temperature of 170 K, the crystalline ice being found to strongly attenuate IR photons at the mid-IR wavelengths

    Polycrystalline ZrTe5 Parametrized as a Narrow-Band-Gap Semiconductor for Thermoelectric Performance

    Get PDF
    The transition-metal pentatellurides HfTe 5 and ZrTe 5 have been studied for their exotic transport properties with much debate over the transport mechanism, band gap, and cause of the resistivity behavior, including a large low-temperature resistivity peak. Single crystals grown by the chemical-vapor-transport method have shown an n − p transition of the Seebeck coefficient at the same temperature as a peak in the resistivity. We show that behavior similar to that of single crystals can be observed in iodine-doped polycrystalline samples but that undoped polycrystalline samples exhibit drastically different properties: they are p type over the entire temperature range. Additionally, the thermal conductivity for polycrystalline samples is much lower, 1.5     Wm − 1     K − 1 , than previously reported for single crystals. It is found that the polycrystalline ZrTe 5 system can be modeled as a simple semiconductor with conduction and valence bands both contributing to transport, separated by a band gap of 20 meV. This model demonstrates to first order that a simple two-band model can explain the transition from n - to p -type behavior and the cause of the anomalous resistivity peak. Combined with the experimental data, the two-band model shows that carrier concentration variation is responsible for differences in behavior between samples. Using the two-band model, the thermoelectric performance at different doping levels is predicted, finding z T = 0.2 and 0.1 for p and n type, respectively, at 300 K, and z T = 0.23 and 0.32 for p and n type at 600 K. Given the reasonably high z T that is comparable in magnitude for both n and p type, a thermoelectric device with a single compound used for both legs is feasible

    Deuterium fractionation across the infrared-dark cloud G034.77-00.55 interacting with the supernova remnant W44

    Get PDF
    Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. Aims. To test this scenario, we measured the deuteration of N2H+, DNfrac 2H+- a well-studied tracer of pre-stellar cores - across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. Methods. We use N2H+ and N2D+ J = 1-0 single pointing observations obtained with the 30m antenna at the Instituto de Radioastronomia Millimetrica to infer DN2H+ frac towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, and ambient gas. Results. We find DN2H+ frac in the range 0.03-0.1, which is several orders of magnitude larger than the cosmic D/H ratio (∼10-5). The DN2H+ frac across the shock front is enhanced by more than a factor of 2 (DNfrac 2H+∼ 0.05-0.07) with respect to the ambient gas (=0.03) and similar to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DN2H+ frac ∼ 0.1
    • …
    corecore