153 research outputs found

    Le paludisme dans les suites des interventions chirurgicales en région endémique

    Get PDF
    La fréquence de l'accès palustre dans les suites des interventions chirurgicales a été observée pendant trois mois, en 1992, dans le service de chirurgie de l'hôpital de Bobo-Dioulasso (Burkina Faso) où 6% des cent vingt opérés ont présenté un accès palustre, tous dus à #Plasmodium falciparum, pendant les cinq jours suivant l'intervention. Ce groupe ne présentait pas de caractéristique médicale ou sociale par rapport aux autres opérés. La fréquence de l'accès palustre dans les suites des interventions semble être souvent surestimée. Une recherche systématique de #Plasmodium en cas de fièvre est souhaitable. (Résumé d'auteur

    Acculturation alimentaire et santé dentaire des Yanomamis

    No full text
    http://www.didac.ehu.es/antropo/11/11-14/Pettenati.pd

    A frotarsius chatrathi, first tarsiiform primate (? Tarsiidae) from Africa

    Get PDF
    Tarsiiform primates have long been regarded as a Laurasian group, with an extensive fossil record in the Eocene of North America and EuropeI and two important but less well-known records from Asia

    ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation (ChIP) followed by high-throughput sequencing (ChIP-seq) or ChIP followed by genome tiling array analysis (ChIP-chip) have become standard technologies for genome-wide identification of DNA-binding protein target sites. A number of algorithms have been developed in parallel that allow identification of binding sites from ChIP-seq or ChIP-chip datasets and subsequent visualization in the University of California Santa Cruz (UCSC) Genome Browser as custom annotation tracks. However, summarizing these tracks can be a daunting task, particularly if there are a large number of binding sites or the binding sites are distributed widely across the genome.</p> <p>Results</p> <p>We have developed <it>ChIPpeakAnno </it>as a Bioconductor package within the statistical programming environment R to facilitate batch annotation of enriched peaks identified from ChIP-seq, ChIP-chip, cap analysis of gene expression (CAGE) or any experiments resulting in a large number of enriched genomic regions. The binding sites annotated with <it>ChIPpeakAnno </it>can be viewed easily as a table, a pie chart or plotted in histogram form, i.e., the distribution of distances to the nearest genes for each set of peaks. In addition, we have implemented functionalities for determining the significance of overlap between replicates or binding sites among transcription factors within a complex, and for drawing Venn diagrams to visualize the extent of the overlap between replicates. Furthermore, the package includes functionalities to retrieve sequences flanking putative binding sites for PCR amplification, cloning, or motif discovery, and to identify Gene Ontology (GO) terms associated with adjacent genes.</p> <p>Conclusions</p> <p><it>ChIPpeakAnno </it>enables batch annotation of the binding sites identified from ChIP-seq, ChIP-chip, CAGE or any technology that results in a large number of enriched genomic regions within the statistical programming environment R. Allowing users to pass their own annotation data such as a different Chromatin immunoprecipitation (ChIP) preparation and a dataset from literature, or existing annotation packages, such as <it>GenomicFeatures </it>and <it>BSgenom</it>e, provides flexibility. Tight integration to the <it>biomaRt </it>package enables up-to-date annotation retrieval from the BioMart database.</p

    The Structural Complexity of the Human BORIS Gene in Gametogenesis and Cancer

    Get PDF
    BORIS/CTCFL is a paralogue of CTCF, the major epigenetic regulator of vertebrate genomes. BORIS is normally expressed only in germ cells but is aberrantly activated in numerous cancers. While recent studies demonstrated that BORIS is a transcriptional activator of testis-specific genes, little is generally known about its biological and molecular functions.Here we show that BORIS is expressed as 23 isoforms in germline and cancer cells. The isoforms are comprised of alternative N- and C-termini combined with varying numbers of zinc fingers (ZF) in the DNA binding domain. The patterns of BORIS isoform expression are distinct in germ and cancer cells. Isoform expression is activated by downregulation of CTCF, upregulated by reduction in CpG methylation caused by inactivation of DNMT1 or DNMT3b, and repressed by activation of p53. Studies of ectopically expressed isoforms showed that all are translated and localized to the nucleus. Using the testis-specific cerebroside sulfotransferase (CST) promoter and the IGF2/H19 imprinting control region (ICR), it was shown that binding of BORIS isoforms to DNA targets in vitro is methylation-sensitive and depends on the number and specific composition of ZF. The ability to bind target DNA and the presence of a specific long amino terminus (N258) in different isoforms are necessary and sufficient to activate CST transcription. Comparative sequence analyses revealed an evolutionary burst in mammals with strong conservation of BORIS isoproteins among primates.The extensive repertoire of spliced BORIS variants in humans that confer distinct DNA binding and transcriptional activation properties, and their differential patterns of expression among germ cells and neoplastic cells suggest that the gene is involved in a range of functionally important aspects of both normal gametogenesis and cancer development. In addition, a burst in isoform diversification may be evolutionarily tied to unique aspects of primate speciation
    corecore