40 research outputs found

    Statistical analysis of Ni nanowires breaking processes: a numerical simulation study

    Full text link
    A statistical analysis of the breaking behavior of Ni nanowires is presented. Using molecular dynamic simulations, we have determined the time evolution of both the nanowire atomic structure and its minimum cross section (Sm(t)). Accumulating thousands of independent breaking events, Sm histograms are built and used to study the influence of the temperature, the crystalline stretching direction and the initial nanowire size. The proportion of monomers, dimers and more complex structures at the latest stages of the breaking process are calculated, finding important differences among results obtained for different nanowire orientations and sizes. Three main cases have been observed. (A) [111] stretching direction and large nanowire sizes: the wire evolves from more complex structures to monomers and dimers prior its rupture; well ordered structures is presented during the breaking process. (B) Large nanowires stretched along the [100] and [110] directions: the system mainly breaks from complex structures (low probability of finding monomers and dimers), having disordered regions during their breakage; at room temperature, a huge histogram peak around Sm=5 appears, showing the presence of long staggered pentagonal Ni wires with ...-5-1-5-... structure. (C) Initial wire size is small: strong size effects independently on the temperature and stretching direction. Finally, the local structure around monomers and dimmers do not depend on the stretching direction. These configurations differ from those usually chosen in static studies of conductance.Comment: 18 pages, 13 figure

    Ballistic resistivity in aluminum nanocontacts

    Get PDF
    One of the major industrial challenges is to profit from some fascinating physical features present at the nanoscale. The production of dissipationless nanoswitches (or nanocontacts) is one of such attractive applications. Nevertheless, the lack of knowledge of the real efficiency of electronic ballistic/non dissipative transport limits future innovations. For multi-valent metallic nanosystems -where several transport channels per atom are involved- the only experimental technique available for statistical transport characterization is the conductance histogram. Unfortunately its interpretation is difficult because transport and mechanical properties are intrinsically interlaced. We perform a representative series of semiclassical molecular dynamics simulations of aluminum nanocontact breakages, coupled to full quantum conductance calculations, and put in evidence a linear relationship between the conductance and the contact minimum cross-section for the geometrically favored aluminum nanocontact configurations. Valid in a broad range of conductance values, such relation allows the definition of a transport parameter for nanomaterials, that represents the novel concept of ballistic resistivity

    Reflection and transmission of waves in surface-disordered waveguides

    Get PDF
    The reflection and transmission amplitudes of waves in disordered multimode waveguides are studied by means of numerical simulations based on the invariant embedding equations. In particular, we analyze the influence of surface-type disorder on the behavior of the ensemble average and fluctuations of the reflection and transmission coefficients, reflectance, transmittance, and conductance. Our results show anomalous effects stemming from the combination of mode dispersion and rough surface scattering: For a given waveguide length, the larger the mode transverse momentum is, the more strongly is the mode scattered. These effects manifest themselves in the mode selectivity of the transmission coefficients, anomalous backscattering enhancement, and speckle pattern both in reflection and transmission, reflectance and transmittance, and also in the conductance and its universal fluctuations. It is shown that, in contrast to volume impurities, surface scattering in quasi-one-dimensional structures (waveguides) gives rise to the coexistence of the ballistic, diffusive, and localized regimes within the same sample.Comment: LaTeX (REVTeX), 12 pages with 14 EPS figures (epsf macro), minor change

    Intensity Distribution of Modes in Surface Corrugated Waveguides

    Full text link
    Exact calculations of transmission and reflection coefficients in surface randomly corrugated optical waveguides are presented. As the length of the corrugated part of the waveguide increases, there is a strong preference to forward coupling through the lowest mode. An oscillating behavior of the enhanced backscattering as a function of the wavelength is predicted. Although the transport is strongly non isotropic, the analysis of the probability distributions of the transmitted waves confirms in this configuration distributions predicted by Random Matrix Theory for volume disorder

    Mesoscopic scattering in the half-plane: squeezing conductance through a small hole

    Full text link
    We model the 2-probe conductance of a quantum point contact (QPC), in linear response. If the QPC is highly non-adiabatic or near to scatterers in the open reservoir regions, then the usual distinction between leads and reservoirs breaks down and a technique based on scattering theory in the full two-dimensional half-plane is more appropriate. Therefore we relate conductance to the transmission cross section for incident plane waves. This is equivalent to the usual Landauer formula using a radial partial-wave basis. We derive the result that an arbitrarily small (tunneling) QPC can reach a p-wave channel conductance of 2e^2/h when coupled to a suitable reflector. If two or more resonances coincide the total conductance can even exceed this. This relates to recent mesoscopic experiments in open geometries. We also discuss reciprocity of conductance, and the possibility of its breakdown in a proposed QPC for atom waves.Comment: 8 pages, 3 figures, REVTeX. Revised version (shortened), accepted for publication in PR

    Force, charge, and conductance of an ideal metallic nanowire

    Full text link
    The conducting and mechanical properties of a metallic nanowire formed at the junction between two macroscopic metallic electrodes are investigated. Both two- and three-dimensional wires with a W(ide)-N(arrow)-W(ide) geometry are modelled in the free-electron approximation with hard-wall boundary conditions. Tunneling and quantum-size effects are treated exactly using the scattering matrix formalism. Oscillations of order E_F/lambda_F in the tensile force are found when the wire is stretched to the breaking point, which are synchronized with quantized jumps in the conductance. The force and conductance are shown to be essentially independent of the width of the wide sections (electrodes). The exact results are compared with an adiabatic approximation; the later is found to overestimate the effects of tunneling, but still gives qualitatively reasonable results for nanowires of length L>>lambda_F, even for this abrupt geometry. In addition to the force and conductance, the net charge of the nanowire is calculated and the effects of screening are included within linear response theory. Mesoscopic charge fluctuations of order e are predicted which are strongly correlated with the mesoscopic force fluctuations. The local density of states at the Fermi energy exhibits nontrivial behavior which is correlated with fine structure in the force and conductance, showing the importance of treating the whole wire as a mesoscopic system rather than treating only the narrow part.Comment: 23 pages, 8 figure

    Panorámicas para un corte de la vertiente surpirenaica en la zona de estructuras oblicuas de Aínsa – Valle del Cinca

    Get PDF
    En la vertiente meridional de los Pirineos, la franja comprendida entre las latitudes 0Âș9’30’’O y 0Âș26’30’’E, que tiene su eje en torno al valle del rĂ­o Cinca, tiene caracteres peculiares en su estructura: la direcciĂłn de los pliegues y cabalgamientos se aparta de la direcciĂłn pirenaica dominante..

    Subsurface Geophysics and Geology (GEOFSU

    Get PDF
    [EN] The geophysics line at the IGME began in 1927 as a Geophysics Sectiondedicated to subsurface exploration. During all this time, it has been developed in order to support and give expert service in all IGME’s activities both as a geological service and public research institution, as well as a research and development work itself. On the other hand, in recent years the IGME has promoted a line of research aimed at the characterization and 3D modeling of geological structures and formations, the development of dedicated software and the evolution and sophistication of computer equipment. The new scenario of incorporation of the IGME to the CSIC as a national reference center in the field of Earth Sciences has allowed the establishment of the GEOFSUB Research Group (Subsurface Geophysics and Geology). It is constituted by 21 members who had been collaborating regularly of the IGME former scientific-technic areas Geophysics and remote sensing (Área de Geofísica y Teledetección) and Subsurface geology and 3D geological modelling (Área de Geología del Subsuelo y Modelización Geológica 3D). Our main differentiating element is our extensive knowledge of geophysical and geological techniques, which allows us to characterize the subsoil in an optimal waPeer reviewe
    corecore