552 research outputs found

    Greek Validation of Emotional Eating Scale for Children and Adolescents

    Get PDF
    Aim: In this study, we focused on the Greek validation of the Emotional Eating Scale for Children and Adolescents (EES-C). Methods: Our sample consisted of 150 students in primary and secondary school settings from two different areas of Greece. Child Depression Inventory (CDI) and State and Trait Anxiety in Children (STAIC) were also used for validation purposes. Results: The principal component factor analysis for construct validity generated three subscales: eating in response to anger/anxiety, feeling unsettled and depression. The EES-C tool was found with high internal reliability (Cronbach's Alpha 0.917). Conclusions: EES-C is a valid and reliable instrument to detect the emotional eating in children and adolescents in Greece

    Design verification of the gyrotron diamond output window for the upgrade of the ECRH system at W7-X

    Get PDF
    The 10 MW electron cyclotron resonance heating (ECRH) system at the stellarator Wendelstein 7-X (W7-X) currently relies on the successful operation of continuous wave (CW) 1 MW, 140 GHz gyrotrons which have chemical vapor deposition (CVD) diamond output windows cooled by the industrial silicon oil Dow Corning 200(R) 5 cSt. The window features a 1.8 mm thick diamond disk brazed to two copper cuffs with an aperture of 88 mm, which are then integrated in a steel housing. In the context of the upgrade of the ECRH system towards higher microwave power, this gyrotron design has been significantly advanced to fulfill the requirement of 1.5 MW CW operation, still at 140 GHz. A prototype of this new gyrotron is under development at Thales, France. This paper reports the computational fluid dynamics (CFD) conjugated heat transfer and structural analyses of the diamond window performed using the commercial code ANSYS V19.2 to investigate its performance at 1.5 MW operation. Furthermore, sensitivity studies were also carried out with respect to the absorbed power in the disk and the mm-wave beam radius at the window location. These analyses showed that the window design of the existing 1 MW gyrotrons still works quite well at higher power operation, thus verifying the performance of the window. Even in the worst case scenario of 1.5 kW absorbed power, the maximum temperature of 215 °C at the disk center can be safely accepted, being below the conservative limit of 250 °C for CVD diamond. In addition, the non-axial symmetric thermal gradients due to the geometry of the cooling channels lead to thermal stresses in the disk and the cuffs. However, they are much lower than the limits. The copper cuffs experience plasticity deformation in the region of the interface with the diamond disk up to a value of about 1.5 mm

    Cutibacterium acnes is present in non-herniated human discs; its positivity rate correlates with the patients age

    Get PDF
    Introduction: The presence of bacteria in the intervertebral discs (IVDs) and their role in disc degeneration is an area of controversy. Numerous studies have detected Cutibacterium acnes and other microbes with 16S DNA Sequencing and microbial cultures. However, those studies fail to determine whether the bacteria are in-vivo disc bacteria or perioperative contamination. Capoor et al. 1 performed confocal scanning laser microscopy for a limited number of herniated IVDs and detected C. acnes biofilms within the human specimens. Our study investigated the presence of Gram-positive bacteria C. acnes and Staphylococcus aureus in non-herniated human IVDs. Furthermore, expression of cellular recognition receptors Toll-like receptor (TLR) 2, TLR4 and NLR family pyrin domain containing 3 (NLRP3) and the pyroptosis marker Gasdermin D were investigated. Methods: Immunohistochemical staining for Gram-positive bacteria, S. aureus, C.acnes TLR2, TLR4, NLRP3 and Gasdermin D was performed on 75 non-herniated human IVD samples. Cell detection and classification was performed using QuPath. Fluorescently labelled S. aureus cells were co-cultured with human NP cells in monolayer across multiplicity of Infection (MOI) range (1:10- 1:100), and analysed by confocal imaging. Furthermore, human nucleus pulposus (NP) cells in monolayer were treated with Lipopolysaccharide (LPS) (5-50μg/ml) and Peptidoglycan (PGN) (5-50 μg/ml) for 48h, and cells in 3D alginate with PGN for up to 72h. Secretome analysis was performed using Luminex for cytokines, chemokines, matrix degrading enzymes and other secreted factors. Statistical analysis was performed using Kruskal-Wallis, Dunn’s multiple comparison test and Pearson correlation. Results Co-culture of S. aureus with NP cells showed internalisation of bacteria. Immunohistochemical staining demonstrated gram positive bacteria was solely detected within cells and not as biofilm within the tissue. The positivity rate of C. acnes ranged between 5-99%. The number of C.acnes positive cells showed a correlation with the age of the patients (r=0.41, p= 0.007). However, it did not correlate with grade of degeneration. The positivity rate of TLR2 ranged between 5-99% and TLR4 from 3-72%. TLR2 and TLR4 showed a strong correlation (r= 0.62, p= 1.5e-006). A significant decrease in TLR2 was observed in females showing a mid-degenerative grade compared to females showing no signs of degeneration. Investigation of the presence and the correlation between NLRP3, GasderminD, S. aureus and the above-mentioned factors is undergoing. Treatment of NP cells with LPS and PGN resulted in an increase of several catabolic cytokines such as IL-1, TNF, IL-6 and IFN-γ alongside increased production of chemokines, neurotrophic and angiogenic factors associated with IVD degeneration. Conclusion This study demonstrated the presence of Gram-positive bacteria such as C. acnes in non-herniated and cadaveric human disc samples. The internalisation of bacteria by human NP cells was demonstrated and aligns with previous publications. Furthermore, this shows a correlation between age and the presence of C. acnes as well as a strong correlation between the two TLRs. Moreover, bacterial cell membrane components triggered a catabolic response in human disc cells. Ongoing interaction studies between bacteria and NP cells will give us insight it to the potential role of bacteria in disc degeneration

    Design verification of the gyrotron diamond output window for the upgrade of the ECRH system at W7-X

    Get PDF
    The 10 MW electron cyclotron resonance heating (ECRH) system at the stellarator Wendelstein 7-X (W7-X) currently relies on the successful operation of continuous wave (CW) 1 MW, 140 GHz gyrotrons which have chemical vapor deposition (CVD) diamond output windows cooled by the industrial silicon oil Dow Corning 200(R) 5 cSt. The window features a 1.8 mm thick diamond disk brazed to two copper cuffs with an aperture of 88 mm, which are then integrated in a steel housing. In the context of the upgrade of the ECRH system towards higher microwave power, this gyrotron design has been significantly advanced to fulfill the requirement of 1.5 MW CW operation, still at 140 GHz. A prototype of this new gyrotron is under development at Thales, France. This paper reports the computational fluid dynamics (CFD) conjugated heat transfer and structural analyses of the diamond window performed using the commercial code ANSYS V19.2 to investigate its performance at 1.5 MW operation. Furthermore, sensitivity studies were also carried out with respect to the absorbed power in the disk and the mm-wave beam radius at the window location. These analyses showed that the window design of the existing 1 MW gyrotrons still works quite well at higher power operation, thus verifying the performance of the window. Even in the worst case scenario of 1.5 kW absorbed power, the maximum temperature of 215 °C at the disk center can be safely accepted, being below the conservative limit of 250 °C for CVD diamond. In addition, the non-axial symmetric thermal gradients due to the geometry of the cooling channels lead to thermal stresses in the disk and the cuffs. However, they are much lower than the limits. The copper cuffs experience plasticity deformation in the region of the interface with the diamond disk up to a value of about 1.5 mm

    Employing epigenetic memory and native instructive stimuli to stimulate iPS-NLC differentiation

    Get PDF
    Notochordal cells (NCs) are linked to a healthy intervertebral disc (IVD), and are considered a promising candidate for cell-based therapies. However, NCs are scarcely available as they are lost early in life, and attempts at in vitro expansion have failed because NCs lose their specific phenotype. The production of notochordal-like cells (NLCs) from human induced pluripotent stem cells (hiPSCs) is a viable alternative. Therefore, this study aimed to build on the tissue-specific epigenetic memory of hiPSCs derived from IVD-progenitor cells (TIE2+-cells) and the instructive capacity of decellularized notochordal cell-derived matrix (dNCM)2 to improve hiPSC differentiation towards mature, healthy matrix-producing NLCs. hiPSCs were generated from TIE2+-IVD cells of three adult donors. As a comparison donor-matched minimally invasive peripheral blood mononuclear (PBM)-derived iPSCs were used. Firstly, hiPSCs were differentiated into mesendodermal progenitors by Wnt pathway activation (N2B27 medium + 3µM CHIR99021)1 for 2 days. Thereafter, the cells were further driven towards the NC-lineage by transfection with synthetic NOTO mRNA1 and matured by switching to a 3D-cell pellet culture in discogenic medium containing 10ng/mL TGF-β1 or 3mg/mL dNCM until day 28. Read-outs included cell morphology, gene and protein expression and matrix deposition. Both TIE2+- and PBM-cell derived hiPSC showed successful differentiation towards mesendodermal progenitors following Wnt-activation on day 2, indicated by the cells moving out of the colonies after CHIR stimulation. Accordingly, a decreased gene expression of pluripotency markers (OCT4, SOX2, NANOG), and upregulation of Wnt and Nodal signaling (LEF1, NODAL) and mesendodermal markers (FOXA2, TBXT) was detected, compared to mTeSR1 controls. This was confirmed by immuno-stains for FOXA2 and TBXT. On day 3, we detected a significant increase in NOTO mRNA levels in all donor lines after transfection compared to untransfected cell pellets. 3D-pellets of all donor lines showed glycosaminoglycan (GAG)- and collagen type II-rich areas after dNCM- but not TGF-β1-treatment on day 28. This was confirmed with the DMMB-assay, showing a significantly increased GAG content in the 3D-pellets treated with dNCM compared to TGF-β1. Next to that, TIE2+-cell derived iPSC pellets contained a significantly higher GAG content after dNCM-treatment compared to the PBM-cell derived hiPSC pellets. Immunohistochemical evaluation showed a heterogeneous cell population including cells positive for chondrogenic- (ACAN, SOX9), NPC/NC- (panKRT, T), and IVD progenitor- markers (CD24, TIE2). In conclusion, using tissue-specific TIE2+-cell derived hiPSCs combined with dNCM-treatment may allow for an improved differentiation capacity indicated by the increased deposition of GAG and collagen type II-rich matrix. However, the obtained cell population is still very heterogeneous and further transcriptome analysis could unravel whether the 3D-pellets contain cells which were successfully driven towards the notochordal-lineage and how these can be enriched based on unique NC-specific markers. Next to that, delineating which epigenetic features are retained after reprogramming of these two cell lines, could shed light on the observed differences in their differentiation capacity. These insights could be used for further optimization of iPS-NLC differentiation and allow for a more purified population of mature, healthy matrix-producing NLCs. This work was funded by Horizon 2020 (no. 825925) and the Dutch Arthritis Society (LLP22). References 1Colombier, P. et al. (2020). NOTO transcription factor directs human induced pluripotent stem cell-derived mesendoderm progenitors to a notochordal fate. Cells, 9(2), 509. 2Bach, Frances C., et al. "Biologic canine and human intervertebral disc repair by notochordal cell-derived matrix: from bench towards bedside." Oncotarget 9.41 (2018): 26507

    Microallopatry Caused Strong Diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa)

    Get PDF
    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale
    • …
    corecore