1,958 research outputs found
Stimulus Variability Affects the Amplitude of the Auditory Steady-State Response
In this study we investigate whether stimulus variability affects the auditory steady-state response (ASSR). We present cosinusoidal AM pulses as stimuli where we are able to manipulate waveform shape independently of the fixed repetition rate of 4 Hz. We either present sounds in which the waveform shape, the pulse-width, is fixed throughout the presentation or where it varies pseudo-randomly. Importantly, the average spectra of all the fixed-width AM stimuli are equal to the spectra of the mixed-width AM. Our null hypothesis is that the average ASSR to the fixed-width AM will not be significantly different from the ASSR to the mixed-width AM. In a region of interest beamformer analysis of MEG data, we compare the 4 Hz component of the ASSR to the mixed-width AM with the 4 Hz component of the ASSR to the pooled fixed-width AM. We find that at the group level, there is a significantly greater response to the variable mixed-width AM at the medial boundary of the Middle and Superior Temporal Gyri. Hence, we find that adding variability into AM stimuli increases the amplitude of the ASSR. This observation is important, as it provides evidence that analysis of the modulation waveform shape is an integral part of AM processing. Therefore, standard steady-state studies in audition, using sinusoidal AM, may not be sensitive to a key feature of acoustic processing
An Euler Solver Based on Locally Adaptive Discrete Velocities
A new discrete-velocity model is presented to solve the three-dimensional
Euler equations. The velocities in the model are of an adaptive nature---both
the origin of the discrete-velocity space and the magnitudes of the
discrete-velocities are dependent on the local flow--- and are used in a finite
volume context. The numerical implementation of the model follows the
near-equilibrium flow method of Nadiga and Pullin [1] and results in a scheme
which is second order in space (in the smooth regions and between first and
second order at discontinuities) and second order in time. (The
three-dimensional code is included.) For one choice of the scaling between the
magnitude of the discrete-velocities and the local internal energy of the flow,
the method reduces to a flux-splitting scheme based on characteristics. As a
preliminary exercise, the result of the Sod shock-tube simulation is compared
to the exact solution.Comment: 17 pages including 2 figures and CMFortran code listing. All in one
postscript file (adv.ps) compressed and uuencoded (adv.uu). Name mail file
`adv.uu'. Edit so that `#!/bin/csh -f' is the first line of adv.uu On a unix
machine say `csh adv.uu'. On a non-unix machine: uudecode adv.uu; uncompress
adv.tar.Z; tar -xvf adv.ta
Challenging Perceptions of Disability through Performance Poetry Methods: The "Seen but Seldom Heard" Project.
This paper considers performance poetry as a method to explore lived experiences
of disability. We discuss how poetic inquiry used within a participatory arts-based
research framework can enable young people to collectively question society’s
attitudes and actions towards disability. Poetry will be considered as a means to
develop a more accessible and effective arena in which young people with direct
experience of disability can be empowered to develop new skills that enable them
to tell their own stories. Discussion of how this can challenge audiences to critically reflect upon their own perceptions of disability will also be developed
Dynamic IMF production in at intermediate energies
The azimuthal correlations and polar-angle distributions of intermediate-mass fragments (IMFs) produced in Mg+Al at 45 an 95 AMeV were studied. Measurements of -particles and IMFs with emmitted in the mid-rapidity region for mid-central events were compared to IQMD results and results from a static-source model. A maximum in the azimuthal-correlation function at 180\degree\/ can not be described by independently emmitted particles. Momentum conservation of a small source as well as target-projectile correlations from IQMD show the same azimuthal correlations as the experimental data. The polar-angle distributions in the experimental data show a target-projectile seperation, thus giving evidence of dynamic IMF production.\\ {\it Keywords:} dynamic multifragmentation, IMF, IQMD, azimuthal correlations
Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles
We investigate by first-principles simulations the resonant electron-transfer
lifetime from the excited state of an organic adsorbate to a semiconductor
surface, namely isonicotinic acid on rutile TiO(110). The
molecule-substrate interaction is described using density functional theory,
while the effect of a truly semi-infinite substrate is taken into account by
Green's function techniques. Excitonic effects due to the presence of
core-excited atoms in the molecule are shown to be instrumental to understand
the electron-transfer times measured using the so-called core-hole-clock
technique. In particular, for the isonicotinic acid on TiO(110), we find
that the charge injection from the LUMO is quenched since this state lies
within the substrate band gap. We compute the resonant charge-transfer times
from LUMO+1 and LUMO+2, and systematically investigate the dependence of the
elastic lifetimes of these states on the alignment among adsorbate and
substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry
- …