21 research outputs found

    Multipath-assisted maximum-likelihood indoor positioning using UWB signals

    Get PDF
    Multipath-assisted indoor positioning (using ultrawideband signals) exploits the geometric information contained in deterministic multipath components. With the help of a-priori available floorplan information, robust localization can be achieved, even in absence of a line-of-sight connection between anchor and agent. In a recent work, the Cramér-Rao lower bound has been derived for the position estimation variance using a channel model which explicitly takes into account diffuse multipath as a stochastic noise process in addition to the deterministic multipath components. In this paper, we adapt this model for position estimation via a measurement likelihood function and evaluate the performance for real channel measurements. Performance results confirm the applicability of this approach. A position accuracy better than 2.5 cm has been obtained in 90% of the estimates using only one active anchor at a bandwidth of 2GHz and robustness against non-line-of-sight situations has been demonstrated

    Wasserhaushalt

    Get PDF

    An integrated marine data collection for the German Bight – Part 2: Tides, salinity, and waves (1996–2015)

    Get PDF
    Marine spatial planning requires reliable data for, e.g., the design of coastal structures, research, or sea level rise adaptation. This task is particularly ambiguous in the German Bight (North Sea, Europe) because a compromise must be found between economic interests and biodiversity since the environmental status is monitored closely by the European Union. For this reason, we have set up an open-access, integrated marine data collection for the period from 1996 to 2015. It provides bathymetry, surface sediments, tidal dynamics, salinity, and waves for the German Bight and is of interest to stakeholders in science, government, and the economy. This part of a two-part publication presents data from numerical hindcast simulations for sea surface elevation, depth-averaged current velocity, bottom shear stress, depth-averaged salinity, wave parameters, and wave spectra. As an improvement to existing data collections, our data represent the variability in the bathymetry by using annually updated model topographies. Moreover, we provide data at a high temporal and spatial resolution (Hagen et al., 2020b); i.e., numerical model results are gridded to 1000 m at 20 min intervals (https://doi.org/10.48437/02.2020.K2.7000.0004). Tidal characteristic values (Hagen et al., 2020a), such as tidal range or ebb current velocity, are computed based on numerical modeling results (https://doi.org/10.48437/02.2020.K2.7000.0003). Therefore, this integrated marine data collection supports the work of coastal stakeholders and scientists, which ranges from developing detailed coastal models to handling complex natural-habitat problems or designing coastal structures.</p

    Determination of wave parameters and wave run-up for the design of hydraulic structures

    No full text

    Sea State, Tides

    No full text
    This chapter contains sections titled: * Sea State * Tides * Acknowledgment * Reference
    corecore