127 research outputs found

    Adaptive defuzzification for fuzzy systems modeling

    Get PDF
    We propose a new parameterized method for the defuzzification process based on the simple M-SLIDE transformation. We develop a computationally efficient algorithm for learning the relevant parameter as well as providing a computationally simple scheme for doing the defuzzification step in the fuzzy logic controllers. The M-SLIDE method results in a particularly simple linear form of the algorithm for learning the parameter which can be used both off- and on-line

    Universal Holographic Chiral Dynamics in an External Magnetic Field

    Get PDF
    In this work we further extend the investigation of holographic gauge theories in external magnetic fields, continuing earlier work. We study the phenomenon of magnetic catalysis of mass generation in 1+3 and 1+2 dimensions, using D3/D7- and D3/D5-brane systems, respectively. We obtain the low energy effective actions of the corresponding pseudo Goldstone bosons and study their dispersion relations. The D3/D7 system exhibits the usual Gell-Mann--Oakes--Renner (GMOR) relation and a relativistic dispersion relation, while the D3/D5 system exhibits a quadratic non-relativistic dispersion relation and a modified linear GMOR relation. The low energy effective action of the D3/D5 system is related to that describing magnon excitations in a ferromagnet. We also study properties of general Dp/Dq systems in an external magnetic field and verify the universality of the magnetic catalysis of dynamical symmetry breaking.Comment: 41 pages, 11 figures, references adde

    Critical Exponents from AdS/CFT with Flavor

    Full text link
    We use the AdS/CFT correspondence to study the thermodynamics of massive N=2 supersymmetric hypermultiplet flavor fields coupled to N=4 supersymmetric SU(Nc) Yang-Mills theory, formulated on curved four-manifolds, in the limits of large Nc and large 't Hooft coupling. The gravitational duals are probe D-branes in global thermal AdS. These D-branes may undergo a topology-changing transition in the bulk. The D-brane embeddings near the point of the topology change exhibit a scaling symmetry. The associated scaling exponents can be either real- or complex-valued. Which regime applies depends on the dimensionality of a collapsing submanifold in the critical embedding. When the scaling exponents are complex-valued, a first-order transition associated with the flavor fields appears in the dual field theory. Real scaling exponents are expected to be associated with a continuous transition in the dual field theory. For one example with real exponents, the D7-brane, we study the transition in detail. We find two field theory observables that diverge at the critical point, and we compute the associated critical exponents. We also present analytic and numerical evidence that the transition expresses itself in the meson spectrum as a non-analyticity at the critical point. We argue that the transition we study is a true phase transition only when the 't Hooft coupling is strictly infinite.Comment: 31 pages, 21 eps files in 12 figures; v2 added one reference and one footnote, version published in JHE

    Holographic Flavor Transport in Arbitrary Constant Background Fields

    Full text link
    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a component parallel to the electric field and hence may be related to recent study of charge transport in the presence of anomalies.Comment: 27 page

    Dynamics of the chiral phase transition from AdS/CFT duality

    Full text link
    We use Lorentzian signature AdS/CFT duality to study a first order phase transition in strongly coupled gauge theories which is akin to the chiral phase transition in QCD. We discuss the relation between the latent heat and the energy (suitably defined) of the component of a D-brane which lies behind the horizon at the critical temperature. A numerical simulation of a dynamical phase transition in an expanding, cooling Quark-Gluon plasma produced in a relativistic collision is carried out.Comment: 30 pages, 5 figure

    Scaling limit of the one-dimensional attractive Hubbard model: The non-half-filled band case

    Full text link
    The scaling limit of the less than half filled attractive Hubbard chain is studied. This is a continuum limit in which the particle number per lattice site, n, is kept finite (0<n<1) while adjusting the interaction and bandwidth in a such way that there is a finite mass gap. We construct this limit both for the spectrum and the secular equations describing the excitations. We find, that similarly to the half filled case, the limiting model has a massive and a massless sector. The structure of the massive sector is closely analogous to that of the half filled band and consequently to the chiral invariant SU(2) Gross-Neveu (CGN) model. The structure of the massless sector differs from that of the half filled band case: the excitations are of particle and hole type, however they are not uniquely defined. The energy and the momentum of this sector exhibits a tower structure corresponding to a conformal field theory with c=1 and SU(2)xSU(2) symmetry. The energy-momentum spectrum and the zero temperature free energy of the states with finite density coincides with that of the half filled case supporting the identification of the limiting model with the SU(2) symmetric CGN theory.Comment: Latex, 28 page

    Flavor-symmetry Breaking with Charged Probes

    Full text link
    We discuss the recombination of brane/anti-brane pairs carrying D3D3 brane charge in AdS5×S5AdS_5 \times S^5. These configurations are dual to co-dimension one defects in the N=4{\cal N}=4 super-Yang-Mills description. Due to their D3D3 charge, these defects are actually domain walls in the dual gauge theory, interpolating between vacua of different gauge symmetry. A pair of unjoined defects each carry localized (2+1)(2+1) dimensional fermions and possess a global U(N)×U(N)U(N)\times U(N) flavor symmetry while the recombined brane/anti-brane pairs exhibit only a diagonal U(N). We study the thermodynamics of this flavor-symmetry breaking under the influence of external magnetic field.Comment: 21 pages, 10 figure

    Sum rules, plasma frequencies and Hall phenomenology in holographic plasmas

    Get PDF
    We study the AC optical and hall conductivities of Dp/Dq-branes intersections in the probe approximation and use sum-rules to study various associated transport coefficients. We determine that the presence of massive fundamental matter, as compared to massless fundamental matter described holographically by a theory with no dimensional defects, reduces the plasma frequency. We further show that this is not the case when the brane intersections include defects. We discuss in detail how to implement correctly the regularization of retarded Green's functions so that the dispersion relations are satisfied and the low energy behaviour of the system is physically realistic.Comment: 25 pages, 5 figures. v2.minor changes, published versio
    • 

    corecore