650 research outputs found

    A Low Cost Ultrasound-based Localisation System

    Get PDF
    This paper presents a low-cost localisation system based on ultrasonic sensing and time of flight measurements. A compact ultrasound emitter has been designed to generate omnidirectional train of ultrasound pulses which are then picked up by several fixed receivers measuring the time difference of arrival. A least squares approach is used to analytically obtain a first estimate of the emitter position, which is then refined through steepest descent optimisation. All processing is done via a standard Arduino platform, proving the low computational demands of the method. Localisation results are validated against a state-of-the-art Optitrack motion capture system. It is shown that the system can cover a 4.3x3.1m arena with a mean error localisation error of 1.57cm and an average standard deviation of 1.39cm throughout the arena

    Improvement of self-sufficiency for an innovative nearly zero energy building by photovoltaic generators

    Get PDF
    In the present work, a case study of an innovative nearly Zero Energy Building (nZEB) for academic purposes is investigated. In particular, its primary energy vector is electrical, i.e. a Photovoltaic (PV) generator is coupled with storage units and supplies the electrical loads and the thermal demand, which is converted into electrical by heat pumps. The system is designed to maximize the self-sufficiency and minimize the absorption from the grid. Moreover, the nZEB is equipped with sensors that are oriented to smart metering in order to monitor the energy exchange between the rooms of the building. An energy simulation is performed on a yearly basis, evaluating the size of the batteries, to reach the optimal compromise between benefits, in terms of self-sufficiency, and costs

    Educational cosmic ray experiments with Geiger counters

    Get PDF
    Experiments concerning the physics of cosmic rays offer to high-school teachers and students a relatively easy approach to the field of research in high energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic ray experiments carried out by the use of a simple coincidence circuit are briefly discussed

    Disaggregated optical network control and orchestration of heterogeneous domains

    Get PDF
    Network softwarization and disaggregation are two trends that are revolutionizing the network-cloud ecosystem. This paper details possible solutions to control and monitor an infrastructure including an IoT domain, a Cloud domain and a packet-optical network domain

    Educational cosmic-ray experiments with Geiger counters

    Get PDF
    Experiments concerning the physics of cosmic rays offer to highschool teachers and students a relatively easy approach to the field of research in high-energy physics. The detection of cosmic rays does not necessarily require the use of sophisticated equipment, and various properties of the cosmic radiation can be observed and analysed even by the use of a single Geiger counter. Nevertheless, the variety of such kind of experiments and the results obtained are limited because of the inclusive nature of these measurements. A significant improvement may be obtained when two or more Geiger counters are operated in coincidence. In this paper we discuss the potential of performing educational cosmic-ray experiments with Geiger counters. In order to show also the educational value of coincidence techniques, preliminary results of cosmic-ray experiments carried out by the use of a simple coincidence circuit are briefly discussed

    Forensic applications of micro-computed tomography: a systematic review

    Get PDF
    Purpose: The aim of this systematic review was to provide a comprehensive overview of micro-CT current applications in forensic pathology, anthropology, odontology, and neonatology. Methods: A bibliographic research on the electronic databases Pubmed and Scopus was conducted in the time frame 01/01/2001–31/12/2021 without any language restrictions and applying the following free-text search strategy: “(micro-computed tomography OR micro-CT) AND (forensic OR legal)”. The following inclusion criteria were used: (A) English language; (B) Application of micro-CT to biological and/or non-biological materials to address at least one forensic issue (e.g., age estimation, identification of post-mortem interval). The papers selected by three independent investigators have been then classified according to the investigated materials. Results: The bibliographic search provided 651 records, duplicates excluded. After screening for title and/or abstracts, according to criteria A and B, 157 full-text papers were evaluated for eligibility. Ninety-three papers, mostly (64) published between 2017 and 2021, were included; considering that two papers investigated several materials, an overall amount of 99 classifiable items was counted when referring to the materials investigated. It emerged that bones and cartilages (54.55%), followed by teeth (13.13%), were the most frequently analyzed materials. Moreover, micro-CT allowed the collection of structural, qualitative and/or quantitative information also for soft tissues, fetuses, insects, and foreign materials. Conclusion: Forensic applications of micro-CT progressively increased in the last 5 years with very promising results. According to this evidence, we might expect in the near future a shift of its use from research purposes to clinical forensic cases

    Spatio-temporal analysis of the urban–rural gradient structure: an application in a Mediterranean mountainous landscape (Serra San Bruno, Italy)

    Get PDF
    Abstract. The most recent and significant transformations of European landscapes have occurred as a consequence of a series of diffused, varied and often connected phenomena: urban growth and sprawl, agricultural intensification in the most suitable areas and agricultural abandonment in marginal areas. These phenomena can affect dramatically ecosystems' structure and functioning, since certain modifications cause landscape fragmentation while others tend to increase homogeneity. Thus, a thorough comprehension of the evolution trends of landscapes, in particular those linked to urban-rural relations, is crucial for a sustainable landscape planning. In this framework, the main objectives of the present paper are: (a) to investigate Land Use/Land Cover (LULC) transformations and dynamics that occurred over the period 1955–2006 in the municipality of Serra San Bruno (Calabria, Italy), an area particularly representative of the Mediterranean mountainous landscape; (b) to compare the settlement growth with the urban planning tools in charge in the study area; (c) to examine the relationship between urban–rural gradient, landscape metrics, demographic and physical variables; (d) to investigate the evolution of urban–rural gradient composition and configuration along significant axes of landscape changes. Data with a high level of detail (minimum mapping unit 0.2 ha) were obtained through the digitisation of historical aerial photographs and digital orthophotos identifying LULC classes according to the Corine Land Cover legend. The investigated period was divided into four significant time intervals, which were specifically analysed to detect LULC changes. Differently from previous studies, in the present research the spatio-temporal analysis of urban–rural gradient was performed through three subsequent steps: (1) kernel density analysis of settlements; (2) analysis of landscape structure by means of metrics calculated using a moving window method; (3) analysis of composition and configuration of the urban–rural gradient within three landscape profiles located along significant axes of LULC change. The use of thematic overlays and transition matrices enabled a precise identification of the LULC changes that had taken place over the examined period. As a result, a detailed description and mapping of the landscape dynamics were obtained. Furthermore, landscape profiling technique, using continuous data, allowed an innovative and valuable approach for analysing and interpreting urban–rural gradient structure over space and time

    Experimental Evaluation of Dynamic Resource Orchestration in Multi-Layer (Packet over Flexi-Grid Optical) Networks?

    Get PDF
    This paper has been presented at : ONDM 2019 23rd Conference on Optical Network Design and ModellingIn future 5G infrastructures, network services will be de- ployed through sets of Virtual Network Functions (VNFs) leveraging the advantages of both Software Defined Networking (SDN) and Net- work Function Virtualization (NFV). A network service is composed of an ordered sequence of VNFs, i.e., VNF Forwarding Graph (VNFFG), deployed across distributed data centers (DCs). Herein, we present a Cloud/Network Orchestrator which dynamically processes and accom- modates VNFFG requests over a pool of DCs interconnected by a multi- layer (packet/flexi-grid optical) transport network infrastructure. We propose two different cloud and network resource allocation algorithms aiming at: i) minimizing the distance between the selected DCs, and ii) minimizing the load (i.e., consumed cloud resources) of the chosen DCs. Both algorithms run on a Cloud/Network Orchestrator and are ex- perimentally validated and benchmarked on the CTTC ADRENALINE testbed.This work is partially funded by the EU H2020 5G TRANSFORMER project (761536) and the Spanish AURORAS project (RTI2018-099178
    • …
    corecore