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Summary: This paper presents a low-cost localisation system based on ultrasonic sensing and time of flight measurements. A 
compact ultrasound emitter has been designed to generate omnidirectional trains of ultrasound pulses which are then picked 
up by several fixed receivers measuring time difference of arrival. A least squares approach is used to analytically obtain a 
first estimate of the emitter position, which is then refined through steepest descent optimisation. All processing is done via a 
standard Arduino platform, proving the low computational demands of the method. Localisation results are validated against 
a state-of-the-art Optitrack motion capture system. It is shown that the system can cover a 4.3×3.1 m arena with a mean error 
localisation error of 1.57 cm and an average standard deviation of 1.39 cm throughout the arena. 
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1. Introduction 
 

Being able to localise markers and devices is a 
critical enabling technology for a wide variety of 
fields, spanning biomechanics, robotics, sensor 
networks, etc. Over the years, several methods have 
been developed to tackle the localization challenge. 
Localisation platforms based on external sensory 
networks may provide an effective solution for 
satisfying accuracy requirements while meeting  
low-cost constraints. 

In this work, a novel low-cost localisation system 
based on ultrasound sensing is described and validated 
against a state-of-the-art motion tracking system. It is 
shown that such localisation platform is able to provide 
good accuracy while requiring very limited sensing 
and computational complexity. 
 
 
2. Definition of the Infrastructure 
 

Various factors need to be taken into consideration 
when designing or assessing any localisation 
technique, including: accuracy, precision, robustness, 
financial cost and system simplicity (refer to [1] for 
definitions of these metrics). Wireless indoor 
localisation approaches can be classified according to 
two main criteria [1, 2]: i) Physical sensor 
infrastructure, i.e. the platform used to detect/sense 
position, and ii) Positioning algorithm, i.e. the method 
to estimate location from sensory data. 

Most physical sensory infrastructures rely on: a 
signal generator, called an emitter, and a measuring 
unit, called a receiver. Measurement involves the 
transmission and reception of signals between these 
parts of the system. There are four different system 
topologies for positioning systems [2]. An Indirect 
Remote Positioning System (IRPS) was selected here 
as it reduces the need for the mobile system to have 
high computational capabilities on board and offsets 

this function to a fixed ground station. This widens the 
range of systems the localisation platform could be 
applied to. 

Within the IRPS family of localisation systems, 
different choices of signals propagated between the 
emitter and receivers can be made. Here, ultrasound 
(US) localisation was selected as the most appropriate 
sensor type due to its potential high accuracy and low 
cost. Furthermore, due to the slow propagation speed 
of US waves (340 m/s), simple processing technology 
can be used, reducing overall complexity. The 
drawback of currently available systems are overall 
cost and scalability [3, 4]. In fact, the use of the 
ultrasonic sensing within an IRPS topology is a largely 
unexplored technique, due to the challenge of having a 
pointwise omnidirectional US emitter alongside a 
communication system to transmit localisation data 
back to the mobile system. The system proposed here 
overcomes these issues, maintaining high accuracy on 
large volumes while being significantly less expensive 
than commercially available platforms. In particular, 
this is achieved by i) designing a central 
‘omnidirectional’ ultrasonic emitter, described in 
Section 4, ii) using computationally cheap position 
estimation algorithms that can run on simple 
microcontrollers (Section 3), which are then interfaced 
with iii) an embedded radio communication system 
(Section 4). 
 
 

3. Localization Estimation Algorithm 
 

The proposed system consists of a central 
‘omnidirectional’ point emitter to be localised and a 
series of fixed directional receivers at known locations. 

Time-Difference-of-Arrival (TDoA) was selected 
as the approach to estimate emitter position. When 
compared with other approaches such as Angle-of-
Arrival or Time-of-Arrival, TDoA systems are cheaper 
and simpler in both hardware and computational 
algorithm [4-6]. For TDoA, an omnidirectional US 
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signal is generated from the mobile emitter. As this 
pulse reaches the first receiver, the time of reception 𝑡  
is recorded. Furthermore, as the US pulse continues to 
travel, it will continue triggering receivers which will 
also record times relative to the first receiver  
𝑡   𝑡 𝑡 . These relative times of reception allow 
localization of the emitter on a hyperboloid with the 
first receiver and the 𝑖-th receiver positions as foci [7]. 
Mathematically, this translates into the system of 
equations [8] 
 

 
𝑥 𝑥 𝑦 𝑦 𝑧 𝑧   𝑡 𝑡 𝑣
𝑥 𝑥 𝑦 𝑦 𝑧 𝑧   𝑡 𝑡 𝑣

⋮
𝑥 𝑥 𝑦 𝑦 𝑧 𝑧   𝑡 𝑡 𝑣

, (1) 

 
where 𝑣  is the speed of the US signal, 𝑥,𝑦,𝑧  are the 
unknown emitter coordinates and 𝑥 ,𝑦 ,𝑧  are the 
known positions of the receivers. Note that 𝑡   0 
by definition. 
 
 
3.1. Initial Localisation via Triangulation 
 

The physical infrastructure described in Section 2 
and the TDoA approach described in Section 3 
provides a series of hyperboloids theoretically 
intersecting only at the emitter location. However, 
noise in signal propagation, received signal 
measurement and receivers’ locations translates to an 
uncertainty in the estimation of emitter position. 
Closed-form solutions for the localisation problem do 
not accommodate for situations where hyperboloids do 
not intersect at a single point [9], therefore best 
approximations algorithms are always necessary. An 
analytical solution to best-fit the emitter position in 
TDoA systems has been proposed in [8] and is used as 
a first step in the algorithm proposed in this paper. 

To this end, the first line of equation (1) is 
subtracted from the subsequent lines, thus obtaining 
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(3) 

 
and 𝑥   𝑥 𝑥 , 𝑦   𝑦 𝑦 , 𝑧   𝑧 𝑧 . 
 

The solution of this system of linear equations then 
provides the emitter position 𝒑. As mentioned before, 
presence of noise and uncertainties implies that no 
exact solution exists, therefore a Least Squares 

algorithm was used here to solve (2) with minimal 
computational cost [10] 
 

 𝒑 𝐴 𝐴 𝐴 𝒃 , (4) 

 
Note that this solution is simpler than the one 

described in the literature as it provides 𝒑 in a single 
step and does not involve second order equations 
which may lead to multiple solutions. However, as 
matrix inversion 𝐴 𝐴  is required, the matrix 𝐴 𝐴 
must be non-singular. According to the definition of 
the matrix 𝐴 in (3), singular configurations may occur 
if, for example, all the receivers lay on the same plane 
(in this case one of the first three columns is zero), or 
if more than N-4 receivers are located at the same point 
(in this case N-4 rows are linearly dependent). These 
pathological situations can be easily avoided by 
placing the receivers accordingly. Lastly, errors will 
occur if all values of the fourth column of matrix A are 
exactly the same, that is if all receivers are the exact 
same distance away from the closest receiver to the 
robot. Once again, this situation is unlikely to occur in 
practice if the receivers are positioned correctly. 
Therefore equation (4) provides a robust and fast 
method to obtain a first estimate of the emitter location. 

The solution proposed here, unlike the one 
described in [8], is based on a system that relies on one 
emitter and multiple receivers, with the algorithm 
being shaped on this assumption. The use of a single 
central emission pulse per cycle avoids the need for 
time scheduling between different transmitters. On the 
other hand, the system described in [8] requires a  
65 ms time allocation per emitter, reducing overall 
scalability. Moreover, the solution proposed here 
removes the requirement for the ultrasonic transmitters 
to emit signals with known periods and order, thus 
further reducing system complexity. 
 
 
3.2. Localisation Improvement via Optimization 
 
There are several sources of noise and uncertainty in 
the system, therefore an optimisation procedure is used 
to minimise the effect on such factors on localisation 
accuracy. The algorithm described in Section 3.1 
provides a good first estimate of the emitter location, 
but the presence of noise and uncertainty limits its 
accuracy. Therefore, the estimate obtained in (4) is 
used as first guess in an iterative optimization 
procedure aimed at improving localisation accuracy by 
adjusting the estimate 𝒑 . Such an optimization 
problem can be mathematically expressed as 
 

 𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑎𝑟𝑔𝑚𝑖𝑛𝒑𝟎 𝑆 𝒑 , (5) 
 

 
𝑆 𝒑 𝑥 𝑥 𝑦 𝑦

  
𝑧 𝑧
𝑡 𝑡 𝑣  

(6) 
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A simple steepest descent algorithm is proposed to 
solve such problem. Note that Gauss-Newton or 
Levenberg-Marquardt are often preferred thanks to 
their superior convergence properties [11], but they 
require significantly more computational and memory 
resources. Moreover, simulation results indicate that 
such more advanced methods do not offer improved 
performance compared to the simpler steepest descent 
method for the localisation scenario considered here. 

The pseudo-code of the implemented steepest 
descent algorithm proposed for the localisation 
platform is shown in Table 1. Both the step size and 
the stopping criterion for these experiments were 
chosen heuristically. The step size was optimized to 
ensure convergence without requiring too many steps 
and the stopping criterion ensures that the iterative 
minimiser stops as soon as convergence occurs. The 
constraint 𝑘 𝑘  is included to terminate the 
iterative process so that there exists an upper bound for 
its execution time. In fact, very often (e.g. for real 
mobile robotic control) it is more important to get 
position estimates with a good rate, even at the 
expenses of accuracy. Moreover, it is worth noting that 
most of the benefits of steepest descent are realised in 
the first few iterations [11], therefore even a small 
value of 𝑘  is sufficient to significantly improve 
accuracy with respect to the estimate provided by (4). 

 
 
Table 1. Pseudo-code for solving problem (5)-(6). 

 

1. Initialise 𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 1  with results  from equation 
(4); 

2. Calculate step direction 
𝒔𝒕𝒆𝒑 𝑘   ∇𝑆 𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 ; 

3. Perform  an  optimisation  step,  with  a 
predetermined step size 𝛼 

𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 1   𝛼 ∙ 𝒔𝒕𝒆𝒑 𝑘
𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 ; 

4. Check the stopping criterion for convergence; 

5. If  the  stopping  criterion  is  not  satisfied  and 
𝑘 𝑘  repeat  steps  2‐5,  otherwise  return 
𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 . 
 

 
For the results shown in this paper we used 

𝑘   40  and the stopping criterion 
|𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 𝒑𝒆𝒔𝒕𝒊𝒎𝒂𝒕𝒆𝒅 𝑘 1 | 0.0002 . On 
the standard Arduino Mega 2560 platforms used for 
validation it takes on average 0.7 s to get the final 
estimate for emitter location, of which about 0.3 s are 
spent for running the minimisation algorithm. 
 
 
4. Experimental Setup for Validation 
 
4.1. Setup 
 

The processor unit utilised is an Arduino Mega 
2560, which detects signals from the receivers and runs 
algorithm 1 and 2 for localisation. The output of this 

Arduino is connected to a Raspberry Pi to transmit all 
coordinates to a laptop to make a comparison with the 
coordinates provided by a motion tracking system 
composed of 8 Optitrack Prime 17 W cameras. The 
emitter unit also utilizes an Arduino Mega 2560 board 
to trigger emission. Both units are connected via an RF 
transmitter/receiver (ERA-ARDUINO-S900) to 
trigger a new emission only once the localisation 
algorithm is finished. Motion capture results are 
captured at 100 Hz, whereas algorithm 2 takes about 
0.7 s to run on the Arduino Mega 2560 board. To 
synchronise these two datasets, motion capture results 
are acquired and stored until the localiser has 
calculated a position, and then the nearest pair of 
coordinates from the 10 most recently acquired points 
is chosen to perform the comparison. Note that the 
robot used for moving the emitter has a speed of less 
than 1 cm/s, therefore such synchronisation strategy  
is accurate. 
 
4.2. Hardware 
 

The 12 receivers used are based on US ceramic 
transducers (MCUSD16A40S12RO), which resonate 
at 40 kHz when detecting the pulse generated by the 
emitter. The received signal is then amplified 8-fold by 
a three stage analogue amplifier and then converted to 
a square wave via a Schmidt-comparator (LM386). 
This signal processing electronics was inspired by the 
one described in [12]. The threshold value of the 
Schmidt-comparator was chosen to maximise range 
while avoiding the possibility of signal noise being 
amplified. For the setup described in this paper, values 
between ∼0.04 V and ∼0.9 V provided a good trade-
off between range and noise removal. This output of 
the Schmidt-comparator is then rectified and filtered 
by a passive Low Pass Filter at 15.9 kHz. Finally, a 
comparator (LM339-N) with cut off voltage is 1.9 V is 
used to generate the trigger signal to be transmitted to 
the processing unit. 

The emitter is a composed by 13 US transducers 
(MCUSD16A40S12RO), with their outer metallic case 
removed to reduce the directionality properties. The 
support for such transducer was designed and  
3D-printed so that an (almost) omnidirectional 
emission was achieved, as shown in Fig. 1. By doing 
this, the emitter can be considered a point source as 
required by the localisation algorithm described in 
Section 3. The 13 transducers are simultaneously 
pulsed using a microcontroller (PIC12F1822) 
generating a 40 kHz square wave, which is then 
amplified via a MOSFET amplifier and fed to the  
US emitters. 

Experimental tests highlighted that the number of 
pulses driving the emitters affects the performance of 
the localisation system both in in terms of coverage 
and accuracy. More pulses result in increased coverage 
but decreased accuracy, and vice versa. As reported in 
Fig. 2, the mean overall error across the arena is 
proportional to the number of pulses. When a single 
pulse is emitted, the initial time 𝑡  will be identical for 
any active receiver. However, if there are two pulses 
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and some receivers pick up the first pulse and some 
receivers pick up the second pulse, then 𝑡  may be 
different for these two sets of receivers, thus 
introducing additional uncertainty and increasing the 
localisation error. This effect may become significant 
for larger numbers of pulses. In fact, at 40 kHz, the 
time between pulses is 12.5 μs, which corresponds to 
4.3 mm/pulse with a speed of sound  
𝑣   343 𝑚/𝑠 . However, this uncertainty is 
significantly mitigated by the optimiser. On the other 
hand, the coverage of the system relies solely on the 
number of receivers picking up a signal at any given 
emission. Given the receiver circuits used, a weak 
reception may not always be immediately detected 
from the first pulse and could take multiple pulses from 
the same signal before detection is triggered. 
Therefore, the more pulses are being transmitted, the 
more likely a receiver will register a reception and the 
higher the coverage is, as shown in Fig. 2. The optimal 
number of pulses for the setup used for validation was 
determined to be five to ensure almost complete 
coverage while retaining good accuracy. 
 

 
 

Fig. 1. 'Omnidirectional' US transducer array  
for the emitter. 

 

 
 

Fig. 2. Mean error (cm, left) and arena coverage (%, right) 
vs. number of pulses. 

 
 

5. Results 
 

Testing was done in a motion capture arena of 
approximately 4.3 m by 3.1 m, the emitter unit was 
placed onboard a Create 2 Programmable Robot 
(iRobot, USA) that performed random movement 
around the arena for up 1 hour per test. The results from 
both the localiser and motion capture were stored 
offline during this time. The system was tested at four 
different emitter heights from the floor: 280 mm,  
355 mm, 457 mm and 592 mm, to prove its robustness. 
A summary of the results obtained of these 
experiments is reported in Table 2. 

The ‘pre-minimiser results’ are obtained using 
equation (4), whereas results from the optimization 
routine described in Section 3 are referred as  

‘post-minimiser results’. Finally, given that the robot 
cannot move faster than approximately 1 cm/s and that 
algorithm 2 provide results every 0.7 seconds, any 
localisation estimate that is more than 15 cm apart 
from the last estimate can be considered as outlier and 
removed. Such outlier removal provides the set of 
‘post-filter results’. As can be seen in Table 1, 
localisation performance has similar trends across all 
the tested heights. In the following, only the results 
attained at 355 mm altitude are reported as illustrative 
examples. 
 
 

Table 2. Localisation results at different heights. 
 

Height 
(mm) 

Mean 
Error 

Post-Filt 
(cm) 

Points with 
error <  

1 cm Post-
Filt (%) 

Points with 
error <  

3 cm Post-
Filt (%) 

Cover
age 
(%) 

280 1.61 40.1 87.9 87.87 
355 1.57 43.05 88.69 93.40 
457 1.81 36.43 85.45 86.27 
592 1.62 41.06 89.08 79.40 

 
 
5.1. Pre-minimiser 
 

The pre-minimiser results obtained by (4) and 
shown in Fig. 3 are quite inaccurate. In fact, only  
14.2 % of the results are within 1 cm of the true 
position, 47.8 % are within 3 cm and 81.5 % are within 
10 cm. The mean error across all attained values is  
11.2 cm. Such relatively high mean localisation error 
is significantly affected by the presence of extremely 
large errors (>30 cm) due to emitter reflections being 
picked up on the receiver units, a phenomenon that will 
be further discussed later. 
 

 
 

Fig. 3. Pre-Minimiser localisation error (cm) vs Distance 
from Arena Centre, where different colours are used  
for the four quadrants of the arena. Inset plot shows  
a zoomed-out view of the localisation error (range ±30 cm). 
 

Another noticeable trend is the monotonic increase 
of error spread as a function of distance from the centre 
of the arena. This is likely due to the number of 
receivers being involved in a positional calculation; as 
the robot moves away from the centre, some receivers 
go out of range and therefore less information is 
provided to the localisation algorithm. 
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Note that there exist spurious error clusters in 
certain quadrants, as highlighted in Fig. 4. Upon 
further inspection, these outliers were the results of 
some receivers picking up a reflected emission rather 
than the actual emission. In certain areas, this will 
happen in such a way that both algorithms will 
converge on an incorrect location. This could be 
mitigated by increasing delays between emission, by 
logic filtering or by reducing emission strength to 
decrease reflection likelihood. 
 

 
 

Fig. 4. Highlighted area of reflected reception. 
 

To better quantify accuracy, the heat map shown in 
Fig. 5 was produced by discretizing the arena on a grid 
whose cells are 40 cm wide and reporting the median 
localisation error value for each cell. An ‘Inf’ value 
within a cell represents an area that has not been 
explored by the mobile robot during tests, and it is not 
taken into account when calculating means. The colour 
scaling is based on how accurate the data is. 
 

 
 

Fig. 5. Pre-Minimiser heatmap of the median localisation 
error across the arena. Each cell represents a 40 cm × 40 cm 

region in the arena. 
 
 

5.2. Post Minimiser 
 

After processing the results through the algorithm 
reported in Table 1, 41.7 % of the results are within  
1 cm of the true position, almost 3 times as many as the 
pre-minimised results. Moreover, 85.9 % of results are 
now within 3 cm and 96.4 % are within 10 cm of true 
position. Such an improved performance translates to 
an average mean error of 3.33 cm. As shown in Fig. 6, 
the post minimiser results are more accurate 

throughout the arena, and the error does not 
significantly increase as the emitter moves away from 
the centre of the arena. 
 

 
 

Fig. 6. Post-Minimiser localisation error (cm) vs Distance 
from Arena Centre where different colours are used  
for the four quadrants of the arena. Inset plot shows  
a zoomed-out view of the localisation error (range ±30 cm). 
 

The heat map shown in Fig. 7 demonstrates that the 
vast majority of results lie well within acceptable 
tolerances, with only 5 out of 120 cells having median 
errors above 5 cm. 
 

 
 

Fig. 7. Post-Minimiser heatmap of localisation error across 
the arena, showing median results for quadrants  

of 40 cm × 40 cm. 
 
 

5.3. Post Filter 
 

When applying the final filter to remove any value 
that differs more than 15 cm from the previous 
estimate, the accuracy improves even further: 43.1 % 
of the results are within 1 cm of the true position,  
88.7 % are within 3 cm and 99.5 % are within 10 cm. 
The overall average mean error drops to 1.57 cm as 
well. Fig. 8 reports the heat map related to  
these results. 

Fig. 9 reports the median error (blue dots and lines) 
and the mean error (red dots and line) as functions of 
distance from the arena centre. Both trends can be 
fitted by quadratic polynomials with the mean error 
showing some anomalies at 20 cm from arena centre, 
which result from the clustered reflections described 
earlier. The median result is far more robust to such 
reflection areas and shows a consistently lower error 
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throughout the arena, indicating that the error 
distribution is skewed. The standard deviation of the 
results also increased with distance from arena centre, 
with an average standard deviation throughout the 
arena of 1.39 cm. 
 

 
 

Fig. 8. Post-Filter heatmap of localisation error across  
the arena, showing median results for quadrants  

of 40 cm × 40 cm. 
 

 
 

Fig. 9. Median error (red) and mean error (blue) vs distance 
from arena centre. 

 
 
5.4. Results Summary 
 

Table 3 summarises the results of each stage of 
processing, highlighting that the minimisation and 
filtering algorithms significantly improve localisation 
performance. 
 
 
Table 3. Summary of results obtained at various processing 

stages. E = Error, Min = Minimiser, Filt = Filter. 
 

 
 

As previously mentioned, reflections played a 
major role in certain areas and significantly affected 
accuracy in these areas. One way in which this could 
be mitigated would be the addition of a constant time 
delay to ensure the dissipation of any remnant signals 

from previous pulses. Usage in open outdoor areas 
would also remove any reflective areas. 

 
 

6. Conclusions 
 

In this paper an inexpensive yet accurate 
ultrasound-based localisation system is proposed. The 
total cost of the components is around £100, the 
biggest share of which are two Arduino Mega  
2560 boards used for trigger emission and for 
processing data at the receivers end. The system allows 
localisation of 89 % of the 4.3 m × 3.1 m with an 
accuracy of less than 3 cm and 43 % with an accuracy 
of less than 1 cm. The system has been proven to be 
scalable between 280 mm and 592 mm of height, 
without requiring any change in the experimental 
setup. Given the range of the ultrasound transceivers 
used, the system should theoretically perform well in 
arenas up to 12×12×12 m in size. Optimisation of 
receiver location and orientation, and use of more 
powerful transducer, can also allow better performance 
in larger arenas if needed. Finally, more advanced 
filtering approaches may be developed to improve 
robustness with respect to spurious reflections. 
Application in alternative domains, such as camera-
less surveillance systems to improve privacy, may be 
considered as well. 
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