2,029 research outputs found
Precision measurement of the decay branching fractions
Using 482 pb of data taken at GeV, we measure the
branching fractions of the decays of into and
to be \BR(D^{*0} \to D^0\pi^0)=(65.5\pm 0.8\pm 0.5)% and \BR(D^{*0} \to
D^0\gamma)=(34.5\pm 0.8\pm 0.5)% respectively, by assuming that the
decays only into these two modes. The ratio of the two branching fractions is
\BR(D^{*0} \to D^0\pi^0)/\BR(D^{*0} \to D^0\gamma) =1.90\pm 0.07\pm 0.05,
which is independent of the assumption made above. The first uncertainties are
statistical and the second ones systematic. The precision is improved by a
factor of three compared to the present world average values
Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets
This document is the Technical Design Report covering the two large
spectrometer magnets of the PANDA detector set-up. It shows the conceptual
design of the magnets and their anticipated performance. It precedes the tender
and procurement of the magnets and, hence, is subject to possible modifications
arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti
Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski,
Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy),
Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy
Measurement of the Cross Section between 600 and 900 MeV Using Initial State Radiation
We extract the cross section in the energy
range between 600 and 900 MeV, exploiting the method of initial state
radiation. A data set with an integrated luminosity of 2.93 fb taken at
a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII
collider is used. The cross section is measured with a systematic uncertainty
of 0.9%. We extract the pion form factor as well as the
contribution of the measured cross section to the leading order hadronic vacuum
polarization contribution to . We find this value to be
.Comment: 14 pages, 7 figures, accepted by PL
Observation of near = 4.42 and 4.6 GeV
Based on data samples collected with the BESIII detector operating at the
BEPCII storage ring at center-of-mass energies 4.4 GeV, the
processes are observed for the first
time. With an integrated luminosity of near 4.42
GeV, a significant signal is found, and the cross section is
measured to be (20.9 \pm 3.2 \pm 2.5)\pb. With near 4.6 GeV, a clear signal is seen, and the cross section is
measured to be (9.5 \pm 2.1 \pm 1.3) \pb, while evidence is found for an
signal. The first errors are statistical and the second are
systematic. Due to low luminosity or low cross section at other energies, no
significant signals are observed. In the cross section, an
enhancement is seen around 4.42 GeV. Fitting the cross section
with a coherent sum of the Breit-Wigner function and a phase space
term, the branching fraction is
obtained to be of the order of .Comment: 7 pages, 3 figure
First observation of the M1 transition
Using a sample of 106 million \psi(3686) events collected with the BESIII
detector at the BEPCII storage ring, we have made the first measurement of the
M1 transition between the radially excited charmonium S-wave spin-triplet and
the radially excited S-wave spin-singlet states: \psi(3686)\to\gamma\eta_c(2S).
Analyses of the processes \psi(2S)\to \gamma\eta_c(2S) with \eta_c(2S)\to
\K_S^0 K\pi and K^+K^-\pi^0 gave an \eta_c(2S) signal with a statistical
significance of greater than 10 standard deviations under a wide range of
assumptions about the signal and background properties. The data are used to
obtain measurements of the \eta_c(2S) mass (M(\eta_c(2S))=3637.6\pm
2.9_\mathrm{stat}\pm 1.6_\mathrm{sys} MeV/c^2), width
(\Gamma(\eta_c(2S))=16.9\pm 6.4_\mathrm{stat}\pm 4.8_\mathrm{sys} MeV), and the
product branching fraction (\BR(\psi(3686)\to \gamma\eta_c(2S))\times
\BR(\eta_c(2S)\to K\bar K\pi) = (1.30\pm 0.20_\mathrm{stat}\pm
0.30_\mathrm{sys})\times 10^{-5}). Combining our result with a BaBar
measurement of \BR(\eta_c(2S)\to K\bar K \pi), we find the branching fraction
of the M1 transition to be \BR(\psi(3686)\to\gamma\eta_c(2S)) = (6.8\pm
1.1_\mathrm{stat}\pm 4.5_\mathrm{sys})\times 10^{-4}.Comment: 7 pages, 1 figure, 1 tabl
Search for
The decay is searched for using data samples
collected with the BESIII detector operating at the BEPCII storage ring at
center-of-mass energies and ~GeV. No significant signal
for the is found, and upper limits at the 90\% confidence level
on the Born cross section for the process are determined to be and
pb at and 4.26 GeV, respectively.Comment: 7 pages, 3 figure
Observation of in
Using a sample of events recorded with
the BESIII detector at the symmetric electron positron collider BEPCII, we
report the observation of the decay of the charmonium state
into a pair of mesons in the process
. The branching fraction is measured for the first
time to be , where the first uncertainty is
statistical, the second systematic and the third is from the uncertainty of
. The mass and width of the are
determined as MeV/ and
MeV.Comment: 13 pages, 6 figure
Measurement of the Matrix Elements for the Decays and
Based on a sample of events collected with the
BESIII detector at the BEPCII collider, Dalitz plot analyses of selected 79,625
events, 33,908
events and 1,888
events are performed. The measured
matrix elements of are in reasonable agreement
with previous measurements. The Dalitz plot slope parameters of
and
are determined to be and , respectively, where the first uncertainties are statistical and the
second systematic. Both values are consistent with previous measurements, while
the precision of the latter one is improved by a factor of three. Final state
interactions are found to have an important role in those decays.Comment: 12 pages, 7 figure
- …
