348 research outputs found
Slater-Pauling Rule and Curie-Temperature of Co-based Heusler compounds
A concept is presented serving to guide in the search for new materials with
high spin polarization. It is shown that the magnetic moment of half-metallic
ferromagnets can be calculated from the generalized Slater-Pauling rule.
Further, it was found empirically that the Curie temperature of Co based
Heusler compounds can be estimated from a seemingly linear dependence on the
magnetic moment. As a successful application of these simple rules, it was
found that CoFeSi is, actually, the half-metallic ferromagnet exhibiting
the highest magnetic moment and the highest Curie temperature measured for a
Heusler compound
Electronic structure and spectroscopy of the quaternary Heusler alloy CoCrFeAl
Quaternary Heusler alloys CoCrFeAl with varying Cr to Fe
ratio were investigated experimentally and theoretically. The electronic
structure and spectroscopic properties were calculated using the full
relativistic Korringa-Kohn-Rostocker method with coherent potential
approximation to account for the random distribution of Cr and Fe atoms as well
as random disorder. Magnetic effects are included by the use of spin dependent
potentials in the local spin density approximation.
Magnetic circular dichroism in X-ray absorption was measured at the
edges of Co, Fe, and Cr of the pure compounds and the alloy in order to
determine element specific magnetic moments. Calculations and measurements show
an increase of the magnetic moments with increasing iron content. Resonant
(560eV - 800eV) soft X-ray as well as high resolution - high energy (keV) hard X-ray photo emission was used to probe the density of the
occupied states in CoCrFeAl.Comment: J.Phys.D_Appl.Phys. accepte
Electron correlations in CoMnFeSi Heusler compounds
This study presents the effect of local electronic correlations on the
Heusler compounds CoMnFeSi as a function of the concentration
. The analysis has been performed by means of first-principles
band-structure calculations based on the local approximation to spin-density
functional theory (LSDA). Correlation effects are treated in terms of the
Dynamical Mean-Field Theory (DMFT) and the LSDA+U approach. The formalism is
implemented within the Korringa-Kohn-Rostoker (KKR) Green's function method.
In good agreement with the available experimental data the magnetic and
spectroscopic properties of the compound are explained in terms of strong
electronic correlations. In addition the correlation effects have been analysed
separately with respect to their static or dynamical origin. To achieve a
quantitative description of the electronic structure of
CoMnFeSi both static and dynamic correlations must be treated
on equal footing.Comment: 12 pages, 5 figure
Substituting the main group element in cobalt - iron based Heusler alloys: CoFeAlSi
This work reports about electronic structure calculations for the Heusler
compound CoFeAlSi. Particular emphasis was put on the role of
the main group element in this compound. The substitution of Al by Si leads to
an increase of the number of valence electrons with increasing Si content and
may be seen as electron-doping. Self-consistent electronic structure
calculations were performed to investigate the consequences of the electron
doping for the magnetic properties. The series CoFeAlSi is
found to exhibit half-metallic ferromagnetism and the magnetic moment follows
the Slater-Pauling rule. It is shown that the electron-doping stabilises the
gap in the minority states for .Comment: J. Phys. D (accepted
Correlation in the transition metal based Heusler compounds CoMnSi and CoFeSi
Half-metallic ferromagnets like the full Heusler compounds with formula
XYZ are supposed to show an integer value of the spin magnetic moment.
Calculations reveal in certain cases of X = Co based compounds non-integer
values, in contrast to experiments. In order to explain deviations of the
magnetic moment calculated for such compounds, the dependency of the electronic
structure on the lattice parameter was studied theoretically. In local density
approximation (LDA), the minimum total energy of CoFeSi is found for the
experimental lattice parameter, but the calculated magnetic moment is about 12%
too low. Half-metallic ferromagnetism and a magnetic moment equal to the
experimental value of are found, however, only after increasing the
lattice parameter by more than 6%.
To overcome this discrepancy, the LDA scheme was used to respect on-site
electron correlation in the calculations. Those calculations revealed for
CoFeSi that an effective Coulomb-exchange interaction in the
range of about 2eV to 5eV leads to half-metallic ferromagnetism and the
measured, integer magnetic moment at the measured lattice parameter. Finally,
it is shown in the case of CoMnSi that correlation may also serve to
destroy the half-metallic behavior if it becomes too strong (for CoMnSi
above 2eV and for CoFeSi above 5eV). These findings indicate that on-site
correlation may play an important role in the description of Heusler compounds
with localized moments.Comment: submitted to Phys. Rev.
Anomalous transport properties of the halfmetallic ferromagnets Co2TiSi, Co2TiGe, and Co2TiSn
In this work the theoretical and experimental investigations of Co2TiZ (Z =
Si, Ge, or Sn) compounds are reported. Half-metallic ferromagnetism is
predicted for all three compounds with only two bands crossing the Fermi energy
in the majority channel. The magnetic moments fulfill the Slater-Pauling rule
and the Curie temperatures are well above room temperature. All compounds show
a metallic like resistivity for low temperatures up to their Curie temperature,
above the resistivity changes to semiconducting like behavior. A large negative
magnetoresistance of 55% is observed for Co2TiSn at room temperature in an
applied magnetic field of 4T which is comparable to the large negative
magnetoresistances of the manganites. The Seebeck coefficients are negative for
all three compounds and reach their maximum values at their respective Curie
temperatures and stay almost constant up to 950 K. The highest value achieved
is -52muV/K m for Co2TiSn which is large for a metal. The combination of
half-metallicity and the constant large Seebeck coefficient over a wide
temperature range makes these compounds interesting materials for
thermoelectric applications and further spincaloric investigations.Comment: 4 pages 4 figure
A p-type Heusler compound: Growth, structure, and properties of epitaxial thin NiYBi films on MgO(100)
Epitaxial semiconducting NiYBi thin films were directly prepared on MgO(100)
substrates by magnetron sputtering. The intensity ratio of the (200) and (400)
diffraction peaks, I(200)/I(400) = 2.93, was close to the theoretical value
(3.03). The electronic structure of NiYBi was calculated using WIEN2k and a
narrow indirect band gap of width 210 meV was found. The valence band spectra
of the films obtained by linear dichroism in hard X-ray photoelectron
spectroscopy exhibit clear structures that are in good agreement with the
calculated band structure of NiYBi
Hennessy-Milner Logic with Greatest Fixed Points as a Complete Behavioural Specification Theory
There are two fundamentally different approaches to specifying and verifying
properties of systems. The logical approach makes use of specifications given
as formulae of temporal or modal logics and relies on efficient model checking
algorithms; the behavioural approach exploits various equivalence or refinement
checking methods, provided the specifications are given in the same formalism
as implementations.
In this paper we provide translations between the logical formalism of
Hennessy-Milner logic with greatest fixed points and the behavioural formalism
of disjunctive modal transition systems. We also introduce a new operation of
quotient for the above equivalent formalisms, which is adjoint to structural
composition and allows synthesis of missing specifications from partial
implementations. This is a substantial generalisation of the quotient for
deterministic modal transition systems defined in earlier papers
Epitaxial Co2Cr0.6Fe0.4Al thin films and magnetic tunneling junctions
Epitaxial thin films of the theoretically predicted half metal
Co2Cr0.6Fe0.4Al were deposited by dc magnetron sputtering on different
substrates and buffer layers. The samples were characterized by x-ray and
electron beam diffraction (RHEED) demonstrating the B2 order of the Heusler
compound with only a small partition of disorder on the Co sites. Magnetic
tunneling junctions with Co2Cr0.6Fe0.4Al electrode, AlOx barrier and Co counter
electrode were prepared. From the Julliere model a spin polarisation of
Co2Cr0.6Fe0.4Al of 54% at T=4K is deduced. The relation between the annealing
temperature of the Heusler electrodes and the magnitude of the tunneling
magnetoresistance effect was investigated and the results are discussed in the
framework of morphology and surface order based of in situ STM and RHEED
investigations.Comment: accepted by J. Phys. D: Appl. Phy
- …