229 research outputs found

    Experimental and Computational Investigation for In-Line Boundary Layer Ingestion

    Get PDF
    The aerodynamic characteristics of an aft-body, in-line mounted, boundary layer ingesting, electric ducted fan, propulsion installation system has been investigated through experimental and computational analysis. A modular wind-tunnel model allows variation in the geometry of the propulsion installation system to be assessed, in combination with fan speed. Various experimental measurement techniques, including LDA, seven-hole-probe and surface pressures are employed. The propulsion installation system has also been investigated using RANS CFD and comparison with experimental data is presented. An investigation of the boundary conditions for efficiently representing the fan in CFD is described. Initial results show reasonably good agreement between CFD and experiment, in terms of velocity profiles and surface pressures, but highlight remaining differences for cases exhibiting flow separation

    CFD applications in offshore engineering

    Full text link
    This paper gives a discussion on the Computational Fluid Dynamics (CFD) applications in offshore engineering. Accurate hydrodynamic quantities are essential for engineering design. Offshore structures are generally subject to high Reynolds number flows. These high Reynolds number flow conditions (Re > 106) are difficult and expensive to achieve in an experimental setup. Therefore, it is attractive to use CFD to provide the essential hydrodynamic quantities for practical design. Verification and validation studies are important for determining the validity of the CFD prediction. A procedure of performing CFD simulation is shown. Different types of turbulence modelling are discussed. Three examples of high Reynolds number CFD simulations, covering flow around offshore structural components and waves past partially-submerged horizontal cylinders, are shown and discussed

    France

    Get PDF
    International audienceNo abstrac

    Transmutations and spectral parameter power series in eigenvalue problems

    Full text link
    We give an overview of recent developments in Sturm-Liouville theory concerning operators of transmutation (transformation) and spectral parameter power series (SPPS). The possibility to write down the dispersion (characteristic) equations corresponding to a variety of spectral problems related to Sturm-Liouville equations in an analytic form is an attractive feature of the SPPS method. It is based on a computation of certain systems of recursive integrals. Considered as families of functions these systems are complete in the L2L_{2}-space and result to be the images of the nonnegative integer powers of the independent variable under the action of a corresponding transmutation operator. This recently revealed property of the Delsarte transmutations opens the way to apply the transmutation operator even when its integral kernel is unknown and gives the possibility to obtain further interesting properties concerning the Darboux transformed Schr\"{o}dinger operators. We introduce the systems of recursive integrals and the SPPS approach, explain some of its applications to spectral problems with numerical illustrations, give the definition and basic properties of transmutation operators, introduce a parametrized family of transmutation operators, study their mapping properties and construct the transmutation operators for Darboux transformed Schr\"{o}dinger operators.Comment: 30 pages, 4 figures. arXiv admin note: text overlap with arXiv:1111.444

    Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow

    Full text link
    A unique pattern selection in the absolutely unstable regime of a driven, nonlinear, open-flow system is analyzed: The spatiotemporal structures of rotationally symmetric vortices that propagate downstream in the annulus of the rotating Taylor-Couette system due to an externally imposed axial through-flow are investigated for two different axial boundary conditions at the in- and outlet. Unlike the stationary patterns in systems without through-flow the spatiotemporal structures of propagating vortices are independent of parameter history, initial conditions, and system's length. They do, however, depend on the axial boundary conditions, the driving rate of the inner cylinder and the through-flow rate. Our analysis of the amplitude equation shows that the pattern selection can be described by a nonlinear eigenvalue problem with the frequency being the eigenvalue. Approaching the border between absolute and convective instability the eigenvalue problem becomes effectively linear and the selection mechanism approaches that one of linear front propagation. PACS:47.54.+r,47.20.Ky,47.32.-y,47.20.FtComment: 15 pages (LateX-file), 8 figures (Postscript
    corecore