3,554 research outputs found
Influence of humidity on granular packings with moving walls
A significant dependence on the relative humidity H for the apparent mass
(Mapp) measured at the bottom of a granular packing inside a vertical tube in
relative motion is demonstrated experimentally. While the predictions of
Janssen's model are verified for all values of H investigated (25%< H <80%),
Mapp increases with time towards a limiting value at high relative humidities
(H>60%) but remains constant at lower ones (H=25%). The corresponding Janssen
length is nearly independent of the tube velocity for H>60% but decreases
markedly for H=25%. Other differences are observed on the motion of individual
beads in the packing. For H=25%, they are almost motionless while the mean
particle fraction of the packing remains constant; for H>60% the bead motion is
much more significant and the mean particle fraction decreases. The dependence
of these results on the bead diameter and their interpretation in terms of the
influence of capillary forces are discussed.Comment: 6 pages, 6 figure
Governance in Service Delivery in the Middle East and North Africa. World Development Report Background Paper
This paper examines the clientelistic equilibrium that remains prevalent in much of the Middle East and North Africa (MENA) region during the post-independence period, undermining service delivery and creating inequality in access. Political institutions and social practices that shape incentives for policymakers, service providers, and citizens create what can be called a potentially tenuous, “clientelistic equilibrium.” Service delivery is influenced by political institutions that allow for the capture of public jobs and service networks, and by social institutions that call upon individuals to respond more readily to members of their social networks than to others. The result is poor quality service delivery (e.g., absenteeism, insufficient effort), difficulties in access (e.g., need for bribes, connections), and inequalities in the provision of services
Calibration of the LIGO displacement actuators via laser frequency modulation
We present a frequency modulation technique for calibration of the
displacement actuators of the LIGO 4-km-long interferometric gravitational-wave
detectors. With the interferometer locked in a single-arm configuration, we
modulate the frequency of the laser light, creating an effective length
variation that we calibrate by measuring the amplitude of the frequency
modulation. By simultaneously driving the voice coil actuators that control the
length of the arm cavity, we calibrate the voice coil actuation coefficient
with an estimated 1-sigma uncertainty of less than one percent. This technique
enables a force-free, single-step actuator calibration using a displacement
fiducial that is fundamentally different from those employed in other
calibration methods.Comment: 10 pages, 5 figures, submitted to Classical and Quantum Gravit
Urban agriculture: a global analysis of the space constraint to meet urban vegetable demand
Urban agriculture (UA) has been drawing a lot of attention recently for several reasons: the majority of the world population has shifted from living in rural to urban areas; the
environmental impact of agriculture is a matter of rising concern; and food insecurity, especially the accessibility of food, remains a major challenge. UA has often been proposed as a solution to some of these issues, for example by producing food in places where population density is highest, reducing transportation costs, connecting people directly to food systems and using urban areas efficiently. However, to date no study has examined how much food could actually be produced in urban areas at the global scale. Here we use a simple approach, based on different global-scale datasets, to assess to what extent UA is constrained by the existing amount of urban space. Our results suggest that UA would require roughly one third of the total global urban area to meet the global vegetable consumption of urban dwellers. This estimate does not consider how much urban area may actually be suitable and available for UA, which likely varies substantially around the world and according to the type of UA performed. Further, this global average value masks variations of more than two orders of magnitude among individual countries. The variations in the space required across countries derive mostly from variations in urban population density, and much less from variations in yields or per capita consumption. Overall, the space required is regrettably the highest where UA is most needed, i.e., in more food insecure countries. We also show that smaller urban clusters (i.e., <100 km2 each) together represent about two thirds of the global urban extent; thus UA discourse and policies should not focus on large cities exclusively, but should also target smaller urban areas that offer the greatest potential in terms of physical space
Systematics and biology of some species of Micrurapteryx Spuler (Lepidoptera, Gracillariidae) from the Holarctic Region, with re-description of M. caraganella (Hering) from Siberia
During a DNA barcoding campaign of leaf-mining insects from Siberia, a genetically divergent lineage of a gracillariid belonging to the genus Micrurapteryx was discovered, whose larvae developed on Caragana Fabr. and Medicago L. (Fabaceae). Specimens from Siberia showed similar external morphology to the Palearctic Micrurapteryx gradatella and the Nearctic Parectopa occulta but differed in male genitalia, DNA barcodes, and nuclear genes histone H3 and 28S. Members of this lineage are re-described here as Micrurapteryx caraganella (Hering, 1957), comb. n., an available name published with only a brief description of its larva and leaf mine.
Micrurapteryx caraganella is widely distributed throughout Siberia, from Tyumen oblast in the West to Transbaikalia in the East. Occasionally it may severely affect its main host, Caragana arborescens Lam. This species has been confused in the past with Micrurapreryx gradatella in Siberia, but field observations confirm that M. gradatella exists in Siberia and is sympatric with M. caraganella, at least in the Krasnoyarsk region, where it feeds on different host plants (Vicia amoena Fisch. and Vicia sp.).
In addition, based on both morphological and molecular evidence as well as examination of type specimens, the North American Parectopa occulta Braun, 1922 and Parectopa albicostella Braun, 1925 are transferred to Micrurapteryx as M. occulta (Braun, 1922), comb. n. with albicostella as its junior synonym (syn. n.). Characters used to distinguish Micrurapteryx from Parectopa are presented and illustrated. These findings provide another example of the potential of DNA barcoding to reveal overlooked species and illuminate nomenclatural problems
Accurate calibration of test mass displacement in the LIGO interferometers
We describe three fundamentally different methods we have applied to
calibrate the test mass displacement actuators to search for systematic errors
in the calibration of the LIGO gravitational-wave detectors. The actuation
frequencies tested range from 90 Hz to 1 kHz and the actuation amplitudes range
from 1e-6 m to 1e-18 m. For each of the four test mass actuators measured, the
weighted mean coefficient over all frequencies for each technique deviates from
the average actuation coefficient for all three techniques by less than 4%.
This result indicates that systematic errors in the calibration of the
responses of the LIGO detectors to differential length variations are within
the stated uncertainties.Comment: 10 pages, 6 figures, submitted on 31 October 2009 to Classical and
Quantum Gravity for the proceedings of 8th Edoardo Amaldi Conference on
Gravitational Wave
Benefits of Artificially Generated Gravity Gradients for Interferometric Gravitational-Wave Detectors
We present an approach to experimentally evaluate gravity gradient noise, a
potentially limiting noise source in advanced interferometric gravitational
wave (GW) detectors. In addition, the method can be used to provide sub-percent
calibration in phase and amplitude of modern interferometric GW detectors.
Knowledge of calibration to such certainties shall enhance the scientific
output of the instruments in case of an eventual detection of GWs. The method
relies on a rotating symmetrical two-body mass, a Dynamic gravity Field
Generator (DFG). The placement of the DFG in the proximity of one of the
interferometer's suspended test masses generates a change in the local
gravitational field detectable with current interferometric GW detectors.Comment: 16 pages, 4 figure
Reexamining evidence-based practice in community corrections: beyond 'a confined view' of what works
This article aims to reexamine the development and scope of evidence-based practice (EBP) in community corrections by exploring three sets of issues. Firstly, we examine the relationships between the contested purposes of community supervision and their relationships to questions of evidence. Secondly, we explore the range of forms of evidence that might inform the pursuit of one purpose of supervision—the rehabilitation of offenders—making the case for a fuller engagement with “desistance” research in supporting this process. Thirdly, we examine who can and should be involved in conversations about EBP, arguing that both ex/offenders’ and practitioners’ voices need to be respected and heard in this debate
Experimental Tools to Study Molecular Recognition within the Nanoparticle Corona
Advancements in optical nanosensor development have enabled the design of sensors using synthetic molecular recognition elements through a recently developed method called Corona Phase Molecular Recognition (CoPhMoRe). The synthetic sensors resulting from these design principles are highly selective for specific analytes, and demonstrate remarkable stability for use under a variety of conditions. An essential element of nanosensor development hinges on the ability to understand the interface between nanoparticles and the associated corona phase surrounding the nanosensor, an environment outside of the range of traditional characterization tools, such as NMR. This review discusses the need for new strategies and instrumentation to study the nanoparticle corona, operating in both in vitro and in vivo environments. Approaches to instrumentation must have the capacity to concurrently monitor nanosensor operation and the molecular changes in the corona phase. A detailed overview of new tools for the understanding of CoPhMoRe mechanisms is provided for future applications
Why, what, and how? case study on law, risk, and decision making as necessary themes in built environment teaching
The paper considers (and defends) the necessity of including legal studies as a core part of built environment undergraduate and postgraduate curricula. The writer reflects upon his own experience as a lawyer working alongside and advising built environment professionals in complex land remediation and site safety management situations in the United Kingdom and explains how themes of liability, risk, and decision making can be integrated into a practical simulation in order to underpin more traditional lecture-based law teaching. Through reflection upon the writer's experiments with simulation-based teaching, the paper suggests some innovations that may better orientate law teaching to engage these themes and, thereby, enhance the relevance of law studies to the future needs of built environment professionals in practice.</p
- …