876 research outputs found
Design of blended rolled edges for compact range main reflectors
A procedure to design blended rolled edge terminations for arbitrary rim shape compact range main reflectors is presented. The reflector may be center-fed or offset-fed. The design procedure leads to a reflector which has a continuous and smooth surface. This procedure also ensures small diffracted fields from the junction between the paraboloid and the blended rolled edge while satisfying certain constraints regarding the maximum height of the reflector and minimum operating frequency of the system. The prescribed procedure is used to design several reflectors and the performance of these reflectors is presented
On the General Ericksen-Leslie System: Parodi's Relation, Well-posedness and Stability
In this paper we investigate the role of Parodi's relation in the
well-posedness and stability of the general Ericksen-Leslie system modeling
nematic liquid crystal flows. First, we give a formal physical derivation of
the Ericksen-Leslie system through an appropriate energy variational approach
under Parodi's relation, in which we can distinguish the
conservative/dissipative parts of the induced elastic stress. Next, we prove
global well-posedness and long-time behavior of the Ericksen-Leslie system
under the assumption that the viscosity is sufficiently large. Finally,
under Parodi's relation, we show the global well-posedness and Lyapunov
stability for the Ericksen-Leslie system near local energy minimizers. The
connection between Parodi's relation and linear stability of the
Ericksen-Leslie system is also discussed
Poisson-Bracket Approach to the Dynamics of Nematic Liquid Crystals. The Role of Spin Angular Momentum
Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting
from this model, we use a Poisson-bracket formalism to derive the equations
governing the dynamics of nematic liquid crystals. We treat the spin angular
momentum density arising from the rotation of constituent molecules about their
centers of mass as an independent field and derive equations for it, the mass
density, the momentum density, and the nematic director. Our equations reduce
to the original Leslie-Ericksen equations, including the inertial director term
that is neglected in the hydrodynamic limit, only when the moment of inertia
for angular momentum parallel to the director vanishes and when a dissipative
coefficient favoring locking of the angular frequencies of director rotation
and spin angular momentum diverges. Our equations reduce to the equations of
nematohydrodynamics in the hydrodynamic limit but with dissipative coefficients
that depend on the coefficient that must diverge to produce the Leslie-Ericksen
equations.Comment: 10 pages, to be published in Phys. Rev. E 72(5
Recommended from our members
Using Administrative Data to Count Local Populations
There is growing evidence that official population statistics based on the decennial census are inaccurate at the local authority level—the fundamental administrative unit of the UK. This paper investigates the use of locally available administrative data sets for counting populations. The method uses truth tables for combining different data sources with different population coverage according to a defined and therefore replicable set of rules. The result is timelier and geographically more flexible data which is more cost-effective to produce than a survey-based census. Associated techniques for linking diverse data sources at individual and household level are briefly discussed. The methodology is then applied to administrative data from a London borough with about 170,000 people. The results are evaluated and compared with other population sources. The paper concludes by discussing potential improvements including scaling up the work to cover multiple local authorities. The practicalities of using alternative central government data sets are briefly considered. A sequel paper in this journal provides examples of key applications of this approach at local level
Disorder-Driven Pretransitional Tweed in Martensitic Transformations
Defying the conventional wisdom regarding first--order transitions, {\it
solid--solid displacive transformations} are often accompanied by pronounced
pretransitional phenomena. Generally, these phenomena are indicative of some
mesoscopic lattice deformation that ``anticipates'' the upcoming phase
transition. Among these precursive effects is the observation of the so-called
``tweed'' pattern in transmission electron microscopy in a wide variety of
materials. We have investigated the tweed deformation in a two dimensional
model system, and found that it arises because the compositional disorder
intrinsic to any alloy conspires with the natural geometric constraints of the
lattice to produce a frustrated, glassy phase. The predicted phase diagram and
glassy behavior have been verified by numerical simulations, and diffraction
patterns of simulated systems are found to compare well with experimental data.
Analytically comparing to alternative models of strain-disorder coupling, we
show that the present model best accounts for experimental observations.Comment: 43 pages in TeX, plus figures. Most figures supplied separately in
uuencoded format. Three other figures available via anonymous ftp
The structure of the distortion free-energy density in nematics: second-order elasticity and surface terms
Trends in variability and extremes of rainfall and temperature in the cattle corridor of Uganda
A study was conducted to determine trends of variability and extremes in rainfall and temperature in order to inform stakeholder’s decisions in planning for appropriate adaptation strategies to climate change. Daily rainfall and temperature data sets from 1961 to 2013 were used. Data were subjected to trend analysis using non-parametric Mann-Kendall tests while rainfall and temperature extremes were derived using RClimdex software. Coefficient of variation (CV) in annual rainfall was 25.3, 12.9 and 16.3 % for Mbarara, Masindi and Soroti respectively. Mean daily maximum temperatures were 26.7, 29.6 and 30.8 oC for Mbarara, Masindi and Soroti respectively. Annual total wet days were increasing but not significant (P>0.05). Consecutive wet days (CWD) were increasing only in Mbarara while consecutive dry days, CDDs revealed weak declining trends in Mbarara and stronger significant increasing trends in Soroti (P<0.05). The number of hot days (TX90p) and warm nights (TN90p) was significantly increasing (P< 0.05) in Mbarara and Masindi. The number of warmest nights (TNx) and hottest days (TXx) was also significantly increasing (P<0.05). Mean diurnal temperature range, DTR showed significant decreasing trends in Mbarara and Masindi (P<0.05) while in Soroti it was significantly increasing. The observed increasing temperatures, coupled with declining CWDs and increasing CDDs will most likely result into increased heat stress to livestock, drying of most surface water sources and changes in pasture species composition thus causing a decline in livestock productivity
Strategic and operational considerations for the Extended Enterprise: insights from the aerospace industry
The Extended Enterprise (EE) paradigm has been adopted in the civil aerospace industry to enhance collaboration and product innovation among supply chain partners. Nevertheless, key aspects of this collaborative form remain poorly understood. In particular, the interrelation of strategic and operational considerations has received little attention in the literature. Our study aimed to investigate this area, using two dyads as case studies, where three companies were involved in an EE form of collaboration. The primary case company was a leading manufacturer in the civil aerospace industry that employs EE principles on both upstream and downstream sides of its supply chain. The other two case companies were key suppliers embedded in the EE. This paper aimed to develop a more complete understanding of how sharing risks and rewards results in effective collaboration among EE partners with key strategic and operational results
Lignin biomarkers as tracers of mercury sources in lakes water column
This study presents the role of specific terrigenous organic compounds as important vectors of mercury (Hg) transported from watersheds to lakes of the Canadian boreal forest. In order to differentiate the autochthonous from the allochthonous organic matter (OM), lignin derived biomarker signatures [Lambda, S/V, C/V, P/(V ? S), 3,5-Bd/V and (Ad/Al)v] were used. Since lignin is exclusively produced by terrigenous plants, this approach can give a non equivocal picture of the watershed inputs to the lakes. Moreover, it allows a characterization of the source of OM and its state of degradation. The water column of six lakes from the Canadian Shield was sampled monthly between June and September 2005. Lake total dissolved Hg concentrations and Lambda were positively correlated, meaning that Hg and ligneous inputs are linked (dissolved OM r2 = 0.62, p\0.0001; particulate OM r2 = 0.76, p\0.0001). Ratios of P/(V ? S) and 3,5-Bd/V from both dissolved OM and particulate OM of the water column suggest an inverse relationship between the progressive state of pedogenesis and maturation of the OM in soil before entering the lake, and the Hg concentrations in the water column. No relation was found between Hg levels in the lakes and the watershed flora composition—angiosperm versus gymnosperm or woody versus non-woody compounds. This study has significant implications for watershed management of ecosystems since limiting fresh terrestrial OM inputs should reduce Hg inputs to the aquatic systems. This is particularly the case for largescale land-use impacts, such as deforestation, agriculture and urbanization, associated to large quantities of soil OM being transferred to aquatic systems
Distant agricultural landscapes
This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited. The final publication is available at Springer via http://dx.doi.org/10.1007/s11625-014-0278-0This paper examines the relationship between the development of the dominant industrial food system and its associated global economic drivers and the environmental sustainability of agricultural landscapes. It makes the case that the growth of the global industrial food system has encouraged increasingly complex forms of “distance” that separate food both geographically and mentally from the landscapes on which it was produced. This separation between food and its originating landscape poses challenges for the ability of more localized agricultural sustainability initiatives to address some of the broader problems in the global food system. In particular, distance enables certain powerful actors to externalize ecological and social costs, which in turn makes it difficult to link specific global actors to particular biophysical and social impacts felt on local agricultural landscapes. Feedback mechanisms that normally would provide pressure for improved agricultural sustainability are weak because there is a lack of clarity regarding responsibility for outcomes. The paper provides a brief illustration of these dynamics with a closer look at increased financialization in the food system. It shows that new forms of distancing are encouraged by the growing significance of financial markets in global agrifood value chains. This dynamic has a substantial impact on food system outcomes and ultimately complicates efforts to scale up small-scale local agricultural models that are more sustainable.The Trudeau Foundation || Social Sciences and Humanities Research Council of Canad
- …
