44 research outputs found
Amino Acid Residues Contributing to Function of the Heteromeric Insect Olfactory Receptor Complex
Olfactory receptors (Ors) convert chemical signals—the binding of odors and pheromones—to electrical signals through the depolarization of olfactory sensory neurons. Vertebrates Ors are G-protein-coupled receptors, stimulated by odors to produce intracellular second messengers that gate ion channels. Insect Ors are a heteromultimeric complex of unknown stoichiometry of two seven transmembrane domain proteins with no sequence similarity to and the opposite membrane topology of G-protein-coupled receptors. The functional insect Or comprises an odor- or pheromone-specific Or subunit and the Orco co-receptor, which is highly conserved in all insect species. The insect Or-Orco complex has been proposed to function as a novel type of ligand-gated nonselective cation channel possibly modulated by G-proteins. However, the Or-Orco proteins lack homology to any known family of ion channel and lack known functional domains. Therefore, the mechanisms by which odors activate the Or-Orco complex and how ions permeate this complex remain unknown. To begin to address the relationship between Or-Orco structure and function, we performed site-directed mutagenesis of all 83 conserved Glu, Asp, or Tyr residues in the silkmoth BmOr-1-Orco pheromone receptor complex and measured functional properties of mutant channels expressed in Xenopus oocytes. 13 of 83 mutations in BmOr-1 and BmOrco altered the reversal potential and rectification index of the BmOr-1-Orco complex. Three of the 13 amino acids (D299 and E356 in BmOr-1 and Y464 in BmOrco) altered both current-voltage relationships and K+ selectivity. We introduced the homologous Orco Y464 residue into Drosophila Orco in vivo, and observed variable effects on spontaneous and evoked action potentials in olfactory neurons that depended on the particular Or-Orco complex examined. Our results provide evidence that a subset of conserved Glu, Asp and Tyr residues in both subunits are essential for channel activity of the heteromeric insect Or-Orco complex
Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays
BACKGROUND: Tuning of the olfactory system of male moths to conspecific female sex pheromones is crucial for correct species recognition; however, little is known about the genetic changes that drive speciation in this system. Moths of the genus Ostrinia are good models to elucidate this question, since significant differences in pheromone blends are observed within and among species. Odorant receptors (ORs) play a critical role in recognition of female sex pheromones; eight types of OR genes expressed in male antennae were previously reported in Ostrinia moths. METHODOLOGY/PRINCIPAL FINDINGS: We screened an O. nubilalis bacterial artificial chromosome (BAC) library by PCR, and constructed three contigs from isolated clones containing the reported OR genes. Fluorescence in situ hybridization (FISH) analysis using these clones as probes demonstrated that the largest contig, which contained eight OR genes, was located on the Z chromosome; two others harboring two and one OR genes were found on two autosomes. Sequence determination of BAC clones revealed the Z-linked OR genes were closely related and tandemly arrayed; moreover, four of them shared 181-bp direct repeats spanning exon 7 and intron 7. CONCLUSIONS/SIGNIFICANCE: This is the first report of tandemly arrayed sex pheromone receptor genes in Lepidoptera. The localization of an OR gene cluster on the Z chromosome agrees with previous findings for a Z-linked locus responsible for O. nubilalis male behavioral response to sex pheromone. The 181-bp direct repeats might enhance gene duplications by unequal crossovers. An autosomal locus responsible for male response to sex pheromone in Heliothis virescens and H. subflexa was recently reported to contain at least four OR genes. Taken together, these findings support the hypothesis that generation of additional copies of OR genes can increase the potential for male moths to acquire altered specificity for pheromone components, and accordingly, facilitate differentiation of sex pheromones
Nematode and Arthropod Genomes Provide New Insights into the Evolution of Class 2 B1 GPCRs
Nematodes and arthropods are the most speciose animal groups and possess Class 2 B1 G-protein coupled receptors
(GPCRs). Existing models of invertebrate Class 2 B1 GPCR evolution are mainly centered on Caenorhabditis elegans and
Drosophila melanogaster and a few other nematode and arthropod representatives. The present study reevaluates the
evolution of metazoan Class 2 B1 GPCRs and orthologues by exploring the receptors in several nematode and arthropod
genomes and comparing them to the human receptors. Three novel receptor phylogenetic clusters were identified and
designated cluster A, cluster B and PDF-R-related cluster. Clusters A and B were identified in several nematode and
arthropod genomes but were absent from D. melanogaster and Culicidae genomes, whereas the majority of the members of
the PDF-R-related cluster were from nematodes. Cluster A receptors were nematode and arthropod-specific but shared a
conserved gene environment with human receptor loci. Cluster B members were orthologous to human GCGR, PTHR and
Secretin members with which they probably shared a common origin. PDF-R and PDF-R related clusters were present in
representatives of both nematodes and arthropods. The results of comparative analysis of GPCR evolution and diversity in
protostomes confirm previous notions that C. elegans and D. melanogaster genomes are not good representatives of
nematode and arthropod phyla. We hypothesize that at least four ancestral Class 2 B1 genes emerged early in the metazoan
radiation, which after the protostome-deuterostome split underwent distinct selective pressures that resulted in duplication
and deletion events that originated the current Class 2 B1 GPCRs in nematode and arthropod genomes.This work was supported by the Portuguese Foundation for Science and Technology (FCT) project PTDC/BIA-BCM/114395/2009, by the European
Regional Development Fund through COMPETE and FCT under the project ‘‘PEst-C/MAR/LA0015/2011.’’ RCF is in receipt of an FCT grant (SFRH/BPD/89811/2012)
and JCRC is supported by auxiliary research contract FCT Pluriannual funds attributed to CCMAR. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript
The red flour beetle's large nose: An expanded odorant receptor gene family in Tribolium castaneum
AbstractThe Tribolium castaneum genome sequence reveals a large number of odorant receptor (Or) genes compared to those found in other insects whose olfactory genomes have been studied—341 Or genes and pseudogenes, encoding 259 intact odorant receptor proteins. An RT-PCR study of larvae and adults revealed that only 145 (64%) of 233 genes with successful genomic DNA amplifications were expressed. No expression of the other 87 genes was detected at any age, suggesting either that these genes are not expressed in this particular strain, or that they are induced only in certain environmental or developmental conditions. TcOR1, the ortholog of the Drosophila Or83b (DmOr83b) gene, which is required for the function of olfactory receptor proteins in Drosophila, was expressed in extracts from adult and larval heads and in extracts from adult bodies. Expression of 41 TcOr genes was detected in extracts from larval head tissue and 111 in extracts from adult head tissue (both figures exclude TcOr1). Twenty-eight TcOrs were detected only in adult bodies. Beetle pupae were injected with TcOr1 dsRNA; unlike sham-injected and control beetles, these knock-down beetles showed no significant response to the Tribolium aggregation pheromone, supporting the hypothesis that TcOr1 plays a similar decisive role in olfaction to DmOr83b. The substantial number of Ors poses the question of why Tribolium has such a large olfactory receptor repertoire, and underlines the need for more studies of the natural history of this species
Molecular determinants of odorant receptor function in insects
The olfactory system of Drosophila melanogaster provides a powerful model to study molecular and cellular mechanisms underlying function of a sensory system. In the 1970s Siddiqi and colleagues pioneered the application of genetics to olfactory research and isolated several mutant Drosophila with odorant-specific defects in olfactory behaviour, suggesting that odorants are detected differentially by the olfactory system. Since then basic principles of olfactory system function and development have emerged using Drosophila as a model. Nearly four decades later we can add computational methods to further our understanding of how specific odorants are detected by receptors. Using a comparative approach we identify two categories of short amino acid sequence motifs: ones that are conserved family-wide predominantly in the C-terminal half of most receptors, and ones that are present in receptors that detect a specific odorant, 4-methylphenol, found predominantly in the N-terminal half. The odorant-specific sequence motifs are predictors of phenol detection in Anopheles gambiae and other insects, suggesting they are likely to participate in odorant binding. Conversely, the family-wide motifs are expected to participate in shared functions across all receptors and a mutation in the most conserved motif leads to a reduction in odor response. These findings lay a foundation for investigating functional domains within odorant receptors that can lead to a molecular understanding of odor detection