52 research outputs found

    Shape Invariance and Its Connection to Potential Algebra

    Get PDF
    Exactly solvable potentials of nonrelativistic quantum mechanics are known to be shape invariant. For these potentials, eigenvalues and eigenvectors can be derived using well known methods of supersymmetric quantum mechanics. The majority of these potentials have also been shown to possess a potential algebra, and hence are also solvable by group theoretical techniques. In this paper, for a subset of solvable problems, we establish a connection between the two methods and show that they are indeed equivalent.Comment: Latex File, 10 pages, One figure available on request. Appeared in the proceedings of the workshop on "Supersymmetric Quantum Mechanics and Integrable Models" held at University of Illinois, June 12-14, 1997; Ed. H. Aratyn et a

    Semi-fermionic representation for spin systems under equilibrium and non-equilibrium conditions

    Full text link
    We present a general derivation of semi-fermionic representation for spin operators in terms of a bilinear combination of fermions in real and imaginary time formalisms. The constraint on fermionic occupation numbers is fulfilled by means of imaginary Lagrange multipliers resulting in special shape of quasiparticle distribution functions. We show how Schwinger-Keldysh technique for spin operators is constructed with the help of semi-fermions. We demonstrate how the idea of semi-fermionic representation might be extended to the groups possessing dynamic symmetries (e.g. singlet/triplet transitions in quantum dots). We illustrate the application of semi-fermionic representations for various problems of strongly correlated and mesoscopic physics.Comment: Review article, 40 pages, 11 figure

    Supersymmetric Fokker-Planck strict isospectrality

    Full text link
    I report a study of the nonstationary one-dimensional Fokker-Planck solutions by means of the strictly isospectral method of supesymmetric quantum mechanics. The main conclusion is that this technique can lead to a space-dependent (modulational) damping of the spatial part of the nonstationary Fokker-Planck solutions, which I call strictly isospectral damping. At the same time, using an additive decomposition of the nonstationary solutions suggested by the strictly isospectral procedure and by an argument of Englefield [J. Stat. Phys. 52, 369 (1988)], they can be normalized and thus turned into physical solutions, i.e., Fokker-Planck probability densities. There might be applications to many physical processes during their transient periodComment: revised version, scheduled for PRE 56 (1 August 1997) as a B

    The su(1,1) dynamical algebra from the Schr\"odinger ladder operators for N-dimensional systems: hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator

    Full text link
    We apply the Schr\"odinger factorization to construct the ladder operators for hydrogen atom, Mie-type potential, harmonic oscillator and pseudo-harmonic oscillator in arbitrary dimensions. By generalizing these operators we show that the dynamical algebra for these problems is the su(1,1)su(1,1) Lie algebra.Comment: 10 page

    On the 3n+l Quantum Number in the Cluster Problem

    Full text link
    It has recently been suggested that an exactly solvable problem characterized by a new quantum number may underlie the electronic shell structure observed in the mass spectra of medium-sized sodium clusters. We investigate whether the conjectured quantum number 3n+l bears a similarity to the quantum numbers n+l and 2n+l, which characterize the hydrogen problem and the isotropic harmonic oscillator in three dimensions.Comment: 8 pages, revtex, 4 eps figures included, to be published in Phys.Rev.A, additional material available at http://radix2.mpi-stuttgart.mpg.de/koch/Diss
    corecore