Exactly solvable potentials of nonrelativistic quantum mechanics are known to
be shape invariant. For these potentials, eigenvalues and eigenvectors can be
derived using well known methods of supersymmetric quantum mechanics. The
majority of these potentials have also been shown to possess a potential
algebra, and hence are also solvable by group theoretical techniques. In this
paper, for a subset of solvable problems, we establish a connection between the
two methods and show that they are indeed equivalent.Comment: Latex File, 10 pages, One figure available on request. Appeared in
the proceedings of the workshop on "Supersymmetric Quantum Mechanics and
Integrable Models" held at University of Illinois, June 12-14, 1997; Ed. H.
Aratyn et a