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A bstract

Exactly solvablepotentialsofnonrelativisticquantum m echanicsareknown to beshape

invariant.Forthesepotentials,eigenvaluesand eigenvectorscan bederived usingwellknown

m ethodsofsupersym m etricquantum m echanics.Them ajority ofthesepotentialshavealso

been shown to possessa potentialalgebra,and hencearealso solvableby group theoretical

techniques. In this paper,for a subset ofsolvable problem s,we establish a connection

between the two m ethodsand show thatthey are indeed equivalent.
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I.Introduction

Itiswellknown thatm ostoftheexactly solvable potentialsofnonrelativistic quantum

m echanics fallunderthe Natanzon class ([1]) where the Schr�odinger equation reduces ei-

ther to the hypergeom etric or the conuent hypergeom etric di�erentialequations. A few

exceptions are known ([2,3]),where solvable potentials are given asa series,and can not

bewritten in closed form in general.W ith theexception ofG innochio potential,allexactly

solvablepotentialsareknown to beshapeinvariant([4,5]);i.e.theirsupersym m etricpart-

ners are ofthe sam e shape,and their spectra can be determ ined entirely by an algebraic

procedure,akin to thatofthe one dim ensionalharm onic oscillator,withouteverreferring

to the underlying di�erentialequations([6]).

Severalofthese exactly solvable system s are also known to possess what is generally

referred to asa potentialalgebra ([7,8,9,10,12,11]). The Ham iltonian ofthese system s

can bewritten astheCasim irofan underlying SO (2,1)algebra,and allthequantum states

ofthesesystem scan bedeterm ined by group theoreticalm ethods.

Thus,there appear to be two seem ingly independentalgebraic m ethods for obtaining

the com plete spectrum ofthese Ham iltonians. In this paper,we analyze this ostensible

coincidence. For a category ofsolvable potentials,we �nd that these two approaches are

indeed related.

In the next section,we briey describe supersym m etric quantum m echanics (SUSY-

Q M ),and discusshow theconstraintofshapeinvariancesu�cesto determ inethespectrum

ofa shape invariant potential(SIP).In sec. 3,we judiciously construct som e algebraic

operatorsand show thatthe shape invariance constraintcan be expressed asan algebraic

condition.Forasetofshapeinvariantpotentials,we�ndthattheshapeinvariancecondition

leads to the presence ofa SO (2,1) potentialalgebra,and we thus establish a connection

between the two algebraic m ethods.In sec. 4,forcom pleteness,we provide a briefreview

ofSO (2,1)representation theory.In sec.5,we derive the spectrum ofa classofpotentials

and explicitly show thatboth m ethodsindeed give identicalspectrum .
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II.SU SY -Q M and Shape Invariance

A quantum m echanicalsystem speci�ed by a potentialV� (x)can alternatively be de-

scribed by itsground state wavefunction  
(� )

0 . Apartfrom a constant(chosen suitably to

m ake the ground state energy zero),itfollowsfrom the Schr�odingerequation thatthe po-

tentialcan be written asV� (x)=

�
 
00

0

 0

�

,where prim e denotesdi�erentiation with respect

to x. In SUSY-Q M ,it is custom ary to express the system in term s ofthe superpotential

W (x)= �

�
 
0

0

 0

�

ratherthan thepotential,and theground statewavefunction isthen given

by  0 � exp
�

�
Rx
x0
W (x)dx

�

,where x0 is an arbitrarily chosen reference point. W e are

using unitswith �h and 2m = 1.TheHam iltonian H � can now bewritten as

H � =

 

�
d2

dx2
+ V� (x)

!

=

 

�
d2

dx2
+ W

2(x)�
dW (x)

dx

!

: (1)

However,asweshallsee,thereisanotherHam iltonian H + with potentialV+ (x)=
�

W 2(x)+
dW (x)

dx

�

,

thatisalm ostiso-spectralwith the originalpotentialV� (x).In particular,the eigenvalues

E +
n ofH + (x)satisfy E

+
n = E

�

n+ 1,where E
�

n are eigenvaluesofH � (x)and n = 0;1;2;� � � ,

i.e. exceptthe ground state allotherstates ofH � are in one-to-one correspondence with

statesofH + .ThepotentialsV� (x)and V+ (x)are known assupersym m etricpartners.

In analogywith theharm onicoscillator,wenow de�netwooperators:A �
�

d
dx
+ W (x)

�

,

and and its Herm itian conjugate A + �
�

� d
dx
+ W (x)

�

. Ham iltonians H � and its super-

partnerH + aregiven by operatorsA + A and AA + respectively.

Now weshallexplicitly establish theiso-spectralrelationship between statesofH + and

H � . Letusdenote the eigenfunctionsofH � thatcorrespond to eigenvalues E �

n ,by  
(� )
n .

Forn = 1;2;� � � ,

H +

�

A 
(� )
n

�

= AA
+
�

A 
(� )
n

�

= A

�

A
+
A 

(� )
n

�

= AH �

�

 
(� )
n

�

= E
�

n

�

A 
(� )
n

�

: (2)

Hence, excepting the ground state which obeys A 
(� )

0
= 0, for any state  

(� )
n of H �

there exists a state A 
(� )
n ofH + with exactly the sam e energy,i.e. E +

n� 1 = E �

n ,where

n = 1;2;� � � , i.e. A 
(� )
n /  

(+ )

n� 1. Conversely, one also has A +  
(+ )
n /  

(� )

n+ 1. Thus,if

theeigenvaluesand theeigenfunctionsofH � wereknown,one would autom atically obtain
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the eigenvalues and the eigenfunctions ofH + ,which is in generala com pletely di�erent

Ham iltonian.

Now,let us consider the specialcase where V� (x) is a SIP.This im plies that V� (x)

and V+ (x) have the sam e functional form ; they only di�er in values of other discrete

param eters and possibly an additive constant. To be explicit,let us assum e that in ad-

dition to the continuous variable x, the potentialV� (x) also depends upon a constant

param eter a0; i.e., V� � V� (x;a0). The ground state of the system of H � is given

by  0(x;a0) � exp
�

�
Rx
x0
W (x;a0)dx

�

:Now, for a shape invariant V� (x;a0), one has,

V+ (x;a0) = V� (x;a1)+ R(a0) ;where R(a0) is the additive constant m entioned above.

Since potentials V+ (x;a0)and V� (x;a1)di�eronly by R(a0),their com m on ground state

is given by  0(x;a1) � exp
�

�
R
x

x0
W (x;a1)dx

�

. Now using SUSY-Q M algebra,the �rst

excited state ofH � (x;a0) is given by A + (x;a0) 
(� )

0 (x;a1). Its energy is E
(� )

1 ,which is

equalto E
(+ )

0
.ButsinceE

(� )

0
= 0,E

(+ )

0
m ustbeR(a0).Continuing up theladderofseries

ofpotentials V� (x;ai),we can obtain the entire spectrum ofH � by algebraic m ethodsof

SUSY-Q M .Theeigenvaluesare given by

E
(� )

0
= 0; and E

(� )
n =

n� 1X

k= 0

R(ak) forn > 0;

and then-th eigenstate isgiven by

 
(� )

n+ 1(x;a0)� A
+ (a0)A

+ (a1)� � � A
+ (an� 1) 

(� )

0
(x;an� 1):

(Toavoid notationalcom plexity,wehavesuppressed thex-dependenceofoperatorsA(x;a0)

and A + (x;a0).)

III.Shape Invariance and PotentialA lgebra

LetusconsiderthespecialcaseofapotentialV� (x;a0)with an additiveshapeinvariance;

i.e. V+ (x;a0)= V� (x;a1)+ R(a0),where an = an� 1 + � = a0 + n�,where � isa constant.

M ostSIP’sfallinto thiscategory.Forthe superpotentialW (x;am )� W (x;m ),the shape

invariance condition im plies

W
2(x;m )+ W

0(x;m )= W
2(x;m + 1)� W

0(x;m + 1)+ R(m ) (3)

As described in the last section,this constraint su�ces to determ ine the entire spectrum
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ofthe potentialV� (x;m ). In thissection,we shallexplore the possible connection ofthis

m ethod with thepotentialalgebra discussed by severalauthors([7,8,9,10,12,11]).

Since for a SIP,the param eter m is changed by a constant am ount each tim e as one

goes from the potentialV� (x;m ) to its superpartner,it is naturalto ask whether such a

task can beform ally accom plished by theaction ofa ladder-type operator.

W ith thatin m ind,we�rstde�nean operatorJ3 = � i @
@�
,analogoustothez-com ponent

ofthe angularm om entum operator. Itactsupon functionsin the space described by two

coordinatesx and �,and itseigenvaluesm play the role ofthe param eterofthe potential.

W e also de�netwo m ore operators,J� and itsHerm itian conjugate J+ by

J
� = e

� i�

�

�
@

@x
� W

�

x;� i
@

@�
�
1

2

��

: (4)

Thefactorse� i� in J� ensurethatthey indeed operateasladderoperatorsforthequantum

num ber m . O perators J� are basically ofthe sam e form as the A � operators described

earlierin sec.2,exceptthattheparam eterm ofthesuperpotentialisreplaced by operators
�

J3 �
1

2

�

.W ith explicitcom putation we �nd

�
J3;J

�
�
= � J� ; (5)

and hence operators J� change the eigenvalues of the J3 operator by unity, sim ilar to

the ladderoperatorsofangularm om entum (SU (2)). Now letusdeterm ine the rem aining

com m utator[J+ ;J� ].TheproductJ+ J� isgiven by

J
+
J
� = e

i�

�
@

@x
� W

�

x;J3 +
1

2

��

e
� i�

�

�
@

@x
� W

�

x;J3 �
1

2

��

=

"

�
@2

@x2
+ W

2

�

x;J3 �
1

2

�

� W
0

�

x;J3 �
1

2

�#

(6)

Sim ilarly,

J
�
J
+ =

"

�
@2

@x2
+ W

2

�

x;J3 +
1

2

�

+ W
0

�

x;J3 +
1

2

�#

: (7)

Hence the com m utatorofoperatorsJ+ and J� isgiven by

�
J
+
;J

�
�

=

"

�
@2

@x2
+ W

2

�

x;J3 �
1

2

�

� W
0

�

x;J3 �
1

2

�#

�

"

�
@2

@x2
+ W

2

�

x;J3 +
1

2

�

+ W
0

�

x;J3 +
1

2

�#

= � R

�

J3 +
1

2

�

; (8)
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wherewehaveused theconstraintofshapeinvariance,i.e.V� (x;J3 �
1

2
)� V+ (x;J3 +

1

2
)=

� R(J3 +
1

2
).Thus,we see thatShapeInvariance enablesusto close the algebra ofJ3 and

J� to

�
J3;J

�
�
= � J� ;

�
J
+
;J

�
�
= � R

�

J3 +
1

2

�

: (9)

Now,ifthefunction R(J3)werelinearin J3,thealgebra ofeq.(9)would reduceto that

ofaSO (3)orSO (2,1).SeveralSIP’sareofthistype,am ongthem aretheM orse,theRosen-

M orse and the P�oschl-Teller Iand IIpotentials. For these potentials,R
�

J3 +
1

2

�

= 2 J3,

and eq.(9)reducestoan SO (2,1)algebra and thusestablishestheconnection between shape

invariance and potentialalgebra. Even though there is m uch sim ilarity between SO (2,1)

and SO (3) algebras,there are som e im portant di�erences between their representations.

Hence,forcom pleteness,wewillbriey describetheunitary representationsofSO (2,1)and

referthe readerto [13]fora m oredetailed presentation.

IV .U nitary R epresentations ofSO (2,1) A lgebra

In thissection,weshallbrieyreview theSO (2,1)algebraand itsunitaryrepresentations

(unireps). This description is prim arily based upon a review article by B.G .Adam s,J.

Cizeka and J.Paldus(1987).ThegeneratorsoftheSO (2,1)algebra satisfy

�
J3;J

�
�
= � J� ;[J+ ;J� ]= � 2J3 ; (10)

whereJ� arerelated to theirCartessian counterpartsby J� = J1 � J2.(Forthefam iliar

SO (3)case,one has[J+ ;J� ]= + 2J3).TheCasim iroftheSO (2,1)algebra is

J
2 = � J+ J

� + J
2
3 � J3 = � J� J

+ + J
2
3 + J3 : (11)

In analogy to therepresentation ofangularm om entum algebra,onecan choose J2 and

one ofthe Ji’sastwo com m uting observables. However,unlike the SO (3)case,each such

choice ofa pairgeneratesa di�erentsetofinequivalentrepresentations.Forbound states,

wechoosethefam iliarrepresentation spaceofstatesjj;m ion which theoperatorsfJ2;J3g

are diagonal: J2jj;m i= j(j+ 1)jj;m i,J3jj;m i= m jj;m i. O peratorsJ� actupon jj;m i

statesasladderoperators:J� jj;m i= [� (j� m )(j� m + 1)]
1

2 jj;m + 1i.Since the quan-

tum num berm increasesin unitstepsfora given j,the generalvalue form isofthe form
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m 0 + n,where n is an integer and m 0 isa realnum ber. There is also another constraint

on the quantum num bersm and j. In unitary representations,J+ and J� are Herm itian

conjugates ofeach other,and J+ J� and J� J+ are therefore positive operators. Thisim -

plies [� (j� m )(j� m + 1)] = �

��

j+ 1

2

�2
�

�

m + 1

2

�2
�

� 0. These constraints can

beillustrated on a two dim ensionalplanardiagram [Fig.1]depicting theallowed valuesof

m and j.O nly theopen triangularareasDFB,HEG and thesquareAEFC aretheallowed

regions.Thevaluesofjm jareno longerbounded by j,and dependingon them 0 (thestart-

ing value ofm ),representationsm ultipletsare eithersem i-in�nite (bounded from below or

above)orcom pletely unbounded.Thusthereisno �nite(nontrivial)unitary representation

ofSO (2,1).In general,thereare fourclassesofunireps.

D + (j)

Bounded from below

(j;m 0)lie along

the segm entAB

8

><

>:

m = � j+ n; n = 0;1;2;� � � ;

j< 0;

D � (j)

Bounded from above

(j;m 0)lie along

the segm entAG

8

><

>:

m = j+ n; n = 0;� 1;� 2;� � � ;

j< 0;

D s(j;m 0)
(j;m 0)lie in

the squarearea

8

>>>><

>>>>:

m = m 0 + n; n = 0;� 1;� 2;� � � ;

j(j+ 1)< (jm 0j� 1)jm 0j;

� 1

2
< m 0 < � 1

2
;

D p(j;m 0)
Unbounded and

com plex j

8

>>>><

>>>>:

m = m 0 + n; n = 0;� 1;� 2;� � � ;

� 1

2
< m 0 < � 1

2
;

j= � 1

2
+ i�:

Here we willbe interested in representations that are bounded from either below or

above.Such representationsfallin triangularareasDFB and HEG .

For the D + representation,the starting value ofm can be anywhere on the darkened

partofthelineAB;otherallowed valuesofm arethen obtained by theaction oftheladder

operatorJ+ .O wing to the equivalence ofD + (j)and D + (� j� 1),they correspond to the
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sam evalueofj(j+ 1).O necould haveequivalently started anywhereon thesegm entCD as

welland used D + (� j� 1).Both areequivalentand each isunique.Sim ilarly,forcom plete

D � (j)(D � (� j� 1))representation,onestartsfrom AG (G H)and generatesallotherstates

by the action ofthe J� operator.

V .Exam ple

As a concrete exam ple,we willexam ine the Scarfpotentialwhich can be related to

the P�oschl-Teller IIpotentialby a rede�nition ofthe independentvariable. W e willshow

thattheshapeinvarianceoftheScarfpotentialautom atically leadsto itspotentialalgebra:

SO (2,1). (Exactly sim ilar analysis can be carried out for the M orse, the Rosen-M orse,

and the P�oschl-Teller potentials.) The Scarfpotentialis described by its superpotential

W (x;a0;B )= a0tanhx+ B sechx.ThepotentialV� (x;a0;B )= W 2(x;a0;B )� W
0(x;a0;B )

isthen given by

V� (x;a0;B )=
h

B
2 � a0(a0 + 1)

i

sech2x + B (2a0 + 1)sechx tanhx + a
2
0 : (12)

Theeigenvaluesofthissystem are given by ([6])

E n = a
2
0 � (a0 � n)

2
: (13)

ThepartnerpotentialV+ (x;a0;B )= W 2(x;a0;B )+ W 0(x;a0;B )isgiven by

V+ (x;a0;B ) =
h

B
2 � a0(a0 � 1)

i

sech2x + B (2a0 � 1)sechx tanhx + a
2
0 :

= V� (x;a1;B )+ a
2
0 � a

2
1 ; (14)

wherea1 = a0 � 1.Thus,R(a0)forthiscase isa
2
0 � a21 = 2a0 � 1,linearin a0.

Now,following the m echanism ofthe sec. 2,consider a set ofoperators J� which is

given by

J
� = e

� i�

�

�
@

@x
�

��

� i
@

@�
�
1

2

�

tanhx + B sechx

��

: (15)

Note the sim ilarity between the operators J� and operators A � de�ned in sec. 2. Since

only the param etera0 changesin the shape invariance condition,itisreplaced by J3 �
1

2
.

Com m utatorsoftheseoperatorswith J3 = � i @
@�

can beshown to closeon J� ,asdiscussed

in generalin Sec. 2. Now,from eq.(9)and (14),the com m utatorofJ� operatorsisgiven
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by � 2J3,thusform ing a closed SO (2,1)algebra. M oreover,the operatorJ+ J� ,acting on

the basisjj;m igives:

J
+
J
� �

�

B
2 �

�

m
2 �

1

4

��

sech2x

+ B

�

2

�

m �
1

2

�

+ 1

�

sechx tanhx +

�

m �
1

2

�2

: (16)

which isjusttheH scarf

�

x;m � 1

2
;B

�

,i.e.theScarfHam iltonian with a0 replaced by m � 1

2
.

Thus the energy eigenvalues ofthe Ham iltonian willbe the sam e as that ofthe operator

J+ J� = J23 � J3 � J2.Hence,theenergy isgiven by E = m 2 � m � j(j+ 1).Substituting

j= n � m ,one gets

E n = m
2 � n � (n � m )2

= (m �
1

2
)2 �

�

n � (m �
1

2
)

�2

: (17)

which isthesam easeq.(13),with a0 replaced by
�

m � 1

2

�

.Thusforthispotential,aswell

asforthe otherthree potentialsm entioned above,there are actually an in�nite num berof

potentials characterised by allallowed values ofthe param eter m that correspond to the

sam e value ofj and hence to the sam e energy E . Hence the nam e \potentialalgebra"

([7,12]).

Conclusion: The algebra ofShape Invariance plays an im portantrole in the solvability of

m ostexactly solvableproblem sin quantum m echanics.Theirspectrum can beeasily gener-

ated sim ply by algebraic m eans.M any ofthese system salso have been shown to possessa

potentialalgebra,which providesan alternate algebraic m ethod to determ inetheeigenval-

uesand eigenfunctions. An obviousquestion iswhetherthese are two unrelated algebraic

m ethodsorthere isa link between them .Fora subsetofexactly solvable potentials,those

with R(a0)linearin param etera0,wehaveshown theequivalenceoftheirshapeinvariance

property to an SO (2,1)potentialalgebra.Asa concreteexam ple,westarted with theScarf

potentialand showed explicitly how shapeinvariance translatesinto the SO (2,1)potential

algebra. W e determ ined the spectra using the algebra ofSO (2,1)and showed them to be

the sam easthatobtained from shapeinvariance.

However,we only worked with solvable m odelsforwhich R(J3)is a linear function of

J3. There are m any system sforwhich the above isnottrue. Also there were new Shape
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Invariantproblem sdiscovered in 1992 ([3])forwhich itisnotpossibleto writethepotential

in closed form . It willbe interesting to know whether there are potentialalgebras that

describe these system ,and whether they are connected to their Shape Invariance. These

are open problem sand are currently underinvestigation.

O neofus(AG )would liketo thank thePhysicsDepartm entoftheUniversity ofIllinois

forwarm hospitality.W e would also like to thank Dr.Prsanta Panigrahiform any related

discussion.
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FIG URE CAPTIO N:

FIG 1.Two dim ension plotshowing theallowed region form and j.
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