Shape Invariance and Its C onnection to P otential A lgebra

a) D epartm ent of P hysics, Loyola U niversity Chicago, Chicago, $I L$ 60626;
b) D epartm ent of P hysics, U niversity of Illinois at C hicago, ($\mathrm{m} / \mathrm{c} 273$)
845 W . Taylor Street, C hicago, II 60607-7059.

Abstract

A.bstract

E xactly solvable potentials of nonrelativistic quantum mechanics are know n to be shape invariant. For these potentials, eigenvalues and eigenvectors can be derived using w ell know n m ethods of supersym m etric quantum m echanics. Them jority of these potentials have also been show n to possess a potential algebra, and hence are also solvable by group theoretical techniques. In this paper, for a subset of solvable problem s, we establish a connection betw een the two m ethods and show that they are indeed equivalent.

[^0]
I. Introduction

It is well know n that m ost of the exactly solvable potentials of nonrelativistic quantum m echanics fall under the N atanzon class (1]) where the Schrodinger equation reduces either to the hypergeom etric or the con uent hypergeom etric di erential equations. A few exceptions are known (园, 目]), where solvable potentials are given as a series, and can not be w ritten in closed form in general. W ith the exception of G innochio potential, all exactly solvable potentials are know n to be shape invariant (4, [5]) ; i.e. their supersym m etric partners are of the sam e shape, and their spectra can be determ ined entirely by an algebraic procedure, akin to that of the one dim ensional harm on ic oscillator, w ithout ever referring to the underlying di erential equations ((6)) .

Several of these exactly solvable system s are also known to possess what is generally referred to as a potential algebra (7, $8,9,10,12,11])$. The H am iltonian of these system s can be w ritten as the C asim ir of an underlying $S O(2,1)$ algebra, and all the quantum states of these system s can be determ ined by group theoreticalm ethods.

Thus, there appear to be tw o seem ingly independent algebraic m ethods for obtaining the com plete spectrum of these H am iltonians. In this paper, we analyze this ostensible coincidence. For a category of solvable potentials, we nd that these two approaches are indeed related.

In the next section, we brie y describe supersym m etric quantum m echanics (SU SY Q M), and discuss how the constraint of shape invariance su ces to determ ine the spectrum of a shape invariant potential (SIP). In sec. 3, we judiciously construct som e algebraic operators and show that the shape invariance constraint can be expressed as an algebraic condition. For a set ofshape invariant potentials, we nd that the shape invariance condition leads to the presence of a SO $(2,1)$ potential algebra, and we thus establish a connection betw een the two algebraic m ethods. In sec. 4, for com pleteness, we provide a brief review of SO (2,1) representation theory. In sec. 5 , we derive the spectrum of a class of potentials and explicitly show that both m ethods indeed give identical spectrum .

A quantum mechanical system speci ed by a potentialV (x) can altematively be described by its ground state wavefunction (). A part from a constant (chosen suitably to m ake the ground state energy zero), it follow sfrom the Schrodinger equation that the potential can be written as $V(x)=\frac{0}{0}$, where prim e denotes di erentiation w ith respect to x. In SUSY-QM, it is custom ary to express the system in term S of the supenpotential $W(x)=\quad \frac{0}{0}$ rather than the potential, and the ground state w avefunction is then given by $0 \quad \exp \quad R_{x_{0}} W(x) d x$, where x_{0} is an arbitrarily chosen reference point. W e are using units w th h and $2 \mathrm{~m}=1$. The H am iltonian H can now be written as

$$
\begin{equation*}
H=\frac{d^{2}}{d x^{2}}+V(x)=\frac{d^{2}}{d x^{2}}+W^{2}(x) \frac{d W(x)^{!}}{d x}: \tag{1}
\end{equation*}
$$

H ow ever, aswe shallsee, there is another H am iltonian $H+w$ ith potential $V_{+}(x)=W^{2}(x)+\frac{d w(x)}{d x}$, that is alm ost iso-spectral w ith the original potential $V(x)$. In particular, the eigenvalues $\mathrm{E}_{\mathrm{n}}^{+}$of $\mathrm{H}_{+}(\mathrm{x})$ satisfy $\mathrm{E}_{\mathrm{n}}^{+}=\mathrm{E}_{\mathrm{n}+1}$, where E_{n} are eigenvalues of $\mathrm{H} \quad(\mathrm{x})$ and $\mathrm{n}=0 ; 1 ; 2$; i.e. except the ground state all other states of H are in one-to-one correspondence w ith states of $H+$. The potentials $V(x)$ and $V_{+}(x)$ are know n as supersym m etric partners.

In analogy w ith the ham onic oscillator, we now de netw o operators: A $\frac{d}{d x}+W(x)$, and and its H erm itian conjugate $A^{+} \quad \frac{d}{d x}+W(x) . H$ am iltonians H and its superpartner H_{+}are given by operators $A^{+} A$ and $A A^{+}$respectively.
N ow we shall explicitly establish the iso-spectral relationship betw een states of $H+$ and H. Let us denote the eigenfunctions of H that correspond to eigenvalues E_{n}, by () . For $n=1 ; 2$;

$$
\begin{align*}
H_{+} A{ }_{n}^{()} & \left.=A A^{+} A{ }_{n}^{(1)}=A A^{+} A{ }_{n}^{(}\right)=A H \quad() \\
& \left.=E_{n} A{ }_{n}^{(}\right): \tag{2}
\end{align*}
$$

Hence, excepting the ground state which obeys A $0_{0}^{(1)}=0$, for any state $\left.{ }_{n}^{(}\right)$of H there exists a state $A\left({ }_{n}^{\prime}\right)$ of $H+w$ ith exactly the sam e energy, i.e. $E_{n}^{+}{ }_{1}=E_{n}$, where
 the eigenvalues and the eigenfunctions of H w ere know n, one w ould autom atically obtain
the eigenvalues and the eigenfunctions of H_{+}, which is in general a com pletely di erent H am iltonian.
N ow, let us consider the special case where $V(x)$ is a $S \mathbb{P}$. This implies that $V(x)$ and $V_{+}(x)$ have the same functional form ; they only di er in values of other discrete param eters and possibly an additive constant. To be explicit, let us assum e that in addition to the continuous variable x, the potential $V(x)$ also depends upon a constant param eter a_{0}; i.e., $V \quad V\left(x ; a_{0}\right)$. The ground state of the system of H is given by $0\left(x ; a_{0}\right) \quad \exp \quad R_{x_{0}}^{R_{x}} W\left(x ; a_{0}\right) d x: N$ ow, for a shape invariant $V\left(x ; a_{0}\right)$, one has, $V_{+}\left(x ; a_{0}\right)=V\left(x ; a_{1}\right)+R\left(a_{0}\right) ;$ where $R\left(a_{0}\right)$ is the additive constant m entioned above. Since potentials $V_{+}\left(x ; a_{0}\right)$ and $V\left(x ; a_{1}\right)$ di er only by $R\left(a_{0}\right)$, their com m on ground state is given by $0\left(x ; a_{1}\right) \quad \exp \quad R_{x_{0}} W\left(x ; a_{1}\right) d x$. N ow using SU SY -QM algebra, the rst excited state of $H \quad\left(x ; a_{0}\right)$ is given by $\left.A^{+}\left(x ; a_{0}\right) \int_{0}^{(}\right)\left(x ; a_{1}\right)$. Its energy is $\left.E_{1}^{(}\right)$, which is equal to $\mathrm{E}_{0}^{(+)}$. But since $\mathrm{E}_{0}^{\left({ }^{\prime}\right)}=0, \mathrm{E}_{0}^{(+)} \mathrm{m}$ ust be $\mathrm{R}\left(\mathrm{a}_{0}\right)$. C ontinuing up the ladder of series of potentials V ($x ; a_{i}$), we can obtain the entire spectrum of H by algebraic m ethods of SU SY - Q M . The eigenvalues are given by

$$
\left.\left.E_{0}^{(}\right)=0 \text {; and } E_{n}^{(}\right)=\mathbb{X}_{k=0}^{1} R\left(a_{k}\right) \text { for } n>0 \text {; }
$$

and the n -th eigenstate is given by

$$
\underset{n+1}{\left(x ; a_{0}\right)} \quad A^{+}\left(a_{0}\right) A^{+}\left(a_{1}\right) \quad+\left(\begin{array}{ll}
\left(a_{n}\right. & 1) \\
0
\end{array}\left(\begin{array}{ll}
\left(x ; a_{n}\right. & 1
\end{array}\right):\right.
$$

(T o avoid notational com plexity, we have suppressed the x-dependence of operators A (x; a_{0}) and $\left.A^{+}\left(x ; a_{0}\right).\right)$

III. Shape Invariance and P otential A lgebra

Let us consider the special case of a potentialV ($x ; a_{0}$) w ith an additive shape invariance; i.e. $V_{+}\left(x ; a_{0}\right)=V\left(x ; a_{1}\right)+R\left(a_{0}\right)$, where $a_{n}=a_{n} 1+\quad=a_{0}+n$, where is a constant. M ost SIP 'S fall into this category. For the supenpotential $W \quad\left(x ; a_{m}\right) \quad W \quad(x ; m)$, the shape invariance condition im plies

$$
\begin{equation*}
W^{2}(x ; m)+W^{0}(x ; m)=W^{2}(x ; m+1) \quad W^{0}(x ; m+1)+R(m) \tag{3}
\end{equation*}
$$

As described in the last section, this constraint su ces to determ ine the entire spectrum
of the potential $V(x ; m)$. In this section, we shall explore the possible connection of this m ethod w ith the potential algebra discussed by several authors ($7,6,6,10,12,11]$).

Since for a $S \mathbb{P}$, the param eter m is changed by a constant am ount each tim e as one goes from the potential $V(x ; m)$ to its supenpartner, it is natural to ask whether such a task can be form ally accom plished by the action of a ladder-type operator.
W ith that in m ind, we rst de ne an operator $J_{3}=i \frac{@}{@}$, analogous to the z-com ponent of the angular m om entum operator. It acts upon functions in the space described by two coordinates x and , and its eigenvalues m play the role of the param eter of the potential. W e also de ne two more operators, J and its H erm itian con jugate J^{+}by

$$
\begin{equation*}
J=e^{i} \quad \frac{@}{@ x} \quad W \quad x ; i \frac{@}{@} \quad \frac{1}{2} \quad: \tag{4}
\end{equation*}
$$

The factors e ${ }^{i}$ in J ensure that they indeed operate as ladder operators for the quantum num ber m. Operators J are basically of the sam eform as the A operators described earlier in sec. 2, except that the param eter m of the supenpotential is replaced by operators $J_{3} \quad \frac{1}{2} \cdot W$ th explicit com putation $w e$ nd

$$
\begin{equation*}
J_{3} ; J=J \quad \text {; } \tag{5}
\end{equation*}
$$

and hence operators J change the eigenvalues of the J_{3} operator by unity, sim ilar to the ladder operators of angular m om entum ($\mathrm{SU}(2)$). N ow let us determ ine the rem aining com m utator $\left[\mathrm{J}^{+} ; J\right.$]. The product $\mathrm{J}^{+} J$ is given by

$$
\begin{align*}
& J^{+} J=e^{i} \frac{@}{@ x} W \quad x ; J_{3}+\frac{1}{2} \\
& e^{i} \frac{@}{@ x} \tag{6}\\
&=\frac{@^{2}}{@ x^{2}}+W^{2} x ; J_{3} \frac{1}{2} \\
& W^{i} J_{3} \frac{1}{2} \\
&=; J_{3} \\
& \frac{1}{2}
\end{align*}
$$

Sim ilarly,

$$
J J^{+}=\frac{@^{2}}{@ x^{2}}+W^{2} x ; J_{3}+\frac{1}{2}+W^{0} x ; J_{3}+\frac{1}{2}_{\#}^{\#}
$$

H ence the com m utator of operators J_{+}and J is given by

$$
\begin{align*}
J^{+} ; J= & \frac{\varrho^{2}}{\varrho_{"}^{2}}+W^{2} x ; J_{3} \frac{1}{2} W^{0} x ; J_{3} \frac{1}{2} \\
& \frac{\varrho^{2}}{@ x^{2}}+W^{2} x ; J_{3}+\frac{1}{2}+W^{0} x ; J_{3}+\frac{1}{2} \\
= & R J_{3}+\frac{1}{2} ; \tag{8}
\end{align*}
$$

w here we have used the constraint of shape invariance, i.e. $V\left(x ; J_{3} \quad \frac{1}{2}\right) \quad V_{+}\left(x ; J_{3}+\frac{1}{2}\right)=$ $R\left(J_{3}+\frac{1}{2}\right)$. Thus, we see that Shape Invariance enables us to close the algebra of J_{3} and J to

$$
\begin{equation*}
J_{3} ; J=J \quad J^{+} ; J=R \quad J_{3}+\frac{1}{2}: \tag{9}
\end{equation*}
$$

N ow, if the function $R\left(J_{3}\right)$ were linear in J_{3}, the algebra of eq. 9) w ould reduce to that of a SO (3) or SO $(2,1)$. SeveralS \mathbb{P} 's are of th is type, am ong them are the M orse, the R osenM orse and the P oschl-Teller I and II potentials. For these potentials, $R \quad J_{3}+\frac{1}{2}=2 J_{3}$, and eq. (9) reduces to an SO $(2,1)$ algebra and thus establishes the connection betw een shape invariance and potential algebra. Even though there is m uch sim ilarity betw een $S O(2,1)$ and $S O$ (3) algebras, there are som e im portant di erences betw een their representations. H ence, for com pleteness, we willbrie y describe the unitary representations of $S O(2,1)$ and refer the reader to [13] for a m ore detailed presentation.
IV. U nitary Representations of SO (2,1) A lgebra

In this section, we shallibrie y review the $S O(2,1)$ algebra and its unitary representations (unireps). This description is prim arily based upon a review article by B.G.A dam S, J. C izeka and J. Paldus (1987). T he generators of the SO $(2,1)$ algebra satisfy

$$
\begin{equation*}
J_{3} ; J=J \quad ;\left[J_{+} ; J\right]=2 J_{3} ; \tag{10}
\end{equation*}
$$

where J are related to their C artessian counterparts by $J=J_{1} \quad J_{2}$. (For the fam iliar SO (3) case, one has $\left.\left[J_{+} ; J\right]=+2 J_{3}\right)$. The C asim ir of the SO $(2,1)$ algebra is

$$
\begin{equation*}
\mathrm{J}^{2}=\mathrm{J}^{+} \mathrm{J}+\mathrm{J}_{3}^{2} \quad \mathrm{~J}_{3}=\mathrm{J} \mathrm{~J}^{+}+\mathrm{J}_{3}^{2}+\mathrm{J}_{3}: \tag{11}
\end{equation*}
$$

In analogy to the representation of angular m om entum algebra, one can choose J^{2} and one of the J_{i} 's as two com muting observables. H ow ever, unlike the SO (3) case, each such choige of a pair generates a di erent set of inequivalent representations. For bound states, we choose the fam iliar representation space of states j $\boldsymbol{j} ; \mathrm{m}$ i on which the operators fJ^{2}; $\mathrm{J}_{3} 9$ are diagonal: $J^{2} \ddot{j} ; m i=j(j+1) \ddot{j} ; m$ i, $J_{3} \ddot{j} ; m i=m$ 弚; m i. Operators J act upon $\ddot{j} ; m i$ states as ladder operators: J j̈;m $\left.i=\left[\begin{array}{cc}(j \quad m\end{array}\right)(j \quad m+1)\right]^{\frac{1}{2}} \quad \ddot{j} ; m+1 i . S$ ince the quantum number m increases in unit steps for a given j, the general value for m is of the form
$m_{0}+n, w h e r e n$ is an integer and m_{0} is a real num ber. There is also another constraint on the quantum num bers m and j. In unitary representations, J^{+}and J are H erm itian conjugates of each other, and $J^{+} J$ and $J J^{+}$are therefore positive operators. This im plies $[(j \quad m)(j \quad m+1)]=\quad j+\frac{1}{2}^{2} \quad m+\frac{1}{2}^{2} \quad 0$. These constraints can be illustrated on a tw o dim ensionalplanar diagram \mathbb{F} ig. 1] depicting the allow ed values of m and j. Only the open triangular areas DFB, HEG and the square AEFC are the allow ed regions. The values of in jare no longer bounded by j, and depending on the $m{ }_{0}$ (the starting value of m), representations multiplets are either sem i-in nite (bounded from below or above) or com pletely unbounded. T hus there is no nite (nontrivial) unitary representation of $S O(2,1)$. In general, there are four classes of un ireps.

$$
\begin{aligned}
& \text { B ounded from below } \stackrel{8}{\gtrless} m=j+n ; n=0 ; 1 ; 2 ; \quad \text {; } \\
& D^{+}(j) \\
& \text { (j;m o) lie along } \quad \vdots \quad j<0 \text {; } \\
& \text { the segm ent A B } \\
& \text { B ounded from above } \\
& \text { D (j) } \\
& \text { (j; m o) lie along } \\
& \text { the segm ent A G } \\
& D_{S}\left(j ; m_{0}\right) \\
& \text { (} \mathrm{j} ; \mathrm{m}_{0} \text {) lie in } \\
& \text { the square area } \\
& \stackrel{8}{\gtrless} \\
& m=j+n ; n=0 ; 1 ; 2 ; \quad ; \\
& \text { ? } j<0 \text {; } \\
& 8
\end{aligned}
$$

H ere we will be interested in representations that are bounded from either below or above. Such representations fall in triangular areas D FB and HEG.

For the D^{+}representation, the starting value of m can be anyw here on the darkened part of the line AB; other allow ed values ofm are then obtained by the action of the ladder operator J^{+}. O w ing to the equivalence of $\mathrm{D}^{+}(j)$ and $D^{+}(j 1)$, they correspond to the
sam e value of $j(j+1)$. O ne could have equivalently started anyw here on the segm ent CD as well and used $D^{+}(j 1)$. B oth are equivalent and each is unique. Sim ilarly, for com plete D (j) (D ($\quad \mathrm{j} 1)$) representation, one starts from $A G(G H)$ and generates all other states by the action of the J operator.
V.E xam ple

As a concrete exam ple, we w ill exam ine the Scarf potential which can be related to the P osch l-T eller II potential by a rede nition of the independent variable. W e w ill show that the shape invariance of the Scarf potential autom atically leads to its potentialalgebra: SO $(2,1)$. (E xactly sim ilar analysis can be carried out for the M orse, the R osen M orse, and the P oschl-Teller potentials.) The Scarf potential is described by its supenpotential $W\left(x ; a_{0} ; B\right)=a_{0} \tanh x+B \operatorname{sech} x . T$ he potentialV $\left(x ; a_{0} ; B\right)=W^{2}\left(x ; a_{0} ; B\right) W^{0}\left(x ; a_{0} ; B\right)$ is then given by

$$
\begin{equation*}
V\left(x ; a_{0} ; B\right)=B^{h} \quad a_{0}\left(a_{0}+1\right)^{i} \operatorname{sech}^{2} x+B\left(2 a_{0}+1\right) \operatorname{sech} x \tanh x+a_{0}^{2}: \tag{12}
\end{equation*}
$$

T he eigenvalues of this system are given by (目])

$$
\begin{equation*}
\mathrm{E}_{\mathrm{n}}=\mathrm{a}_{0}^{2} \quad\left(\mathrm{a}_{0} \quad \mathrm{n}\right)^{2}: \tag{13}
\end{equation*}
$$

T he partner potential $V_{+}\left(x ; a_{0} ; B\right)=W^{2}\left(x ; a_{0} ; B\right)+W^{0}\left(x ; a_{0} ; B\right)$ is given by

$$
\left.\begin{array}{rl}
V_{+}\left(x ; a_{0} ; B\right) & =B^{h} \quad a_{0}\left(a_{0} \quad 1\right)^{i} \operatorname{sech}^{2} x+B\left(2 a_{0} \quad 1\right.
\end{array}\right) \operatorname{sech} x \tanh x+a_{0}^{2}: \begin{cases} & =V\left(x ; a_{1} ; B\right)+a_{0}^{2} \quad a_{1}^{2} ;\end{cases}
$$

where $a_{1}=a_{0}$ 1. Thus, $R\left(a_{0}\right)$ for this case is $a_{0}^{2} \quad a_{1}^{2}=2 a_{0} \quad 1$, linear in a_{0}.
N ow, follow ing the m echanism of the sec. 2, consider a set of operators J which is given by

$$
\begin{equation*}
J=e^{i} \quad \frac{@}{@ x} \quad i \frac{@}{@} \quad \frac{1}{2} \quad \tanh x+B \operatorname{sech} x \quad: \tag{15}
\end{equation*}
$$

N ote the sim ilarity between the operators J and operators A de ned in sec. 2. Since only the param eter a_{0} changes in the shape invariance condition, it is replaced by $J_{3} \quad \frac{1}{2}$. C om m utators of these operators w ith $J_{3}=i \frac{@}{@}$ can be show n to close on J, as discussed in general in Sec. 2. Now, from eq.(9) and (14), the com m utator of J operators is given
by $2 \mathrm{~J}_{3}$, thus form ing a closed $\mathrm{SO}(2,1)$ algebra. M oreover, the operator $\mathrm{J}^{+} \mathrm{J}$, acting on the basis $\mathfrak{j} ; m$ i gives:

$$
\begin{array}{ll}
J^{+} J & B^{2} \quad m^{2} \frac{1}{4} \operatorname{sech}^{2} x \\
+B \quad 2 m & \frac{1}{2}+1 \operatorname{sech} x \tanh x+m \frac{1}{2}^{2}: \tag{16}
\end{array}
$$

which is just the H scarf $x ; m \quad \frac{1}{2}$; B , i.e. the Scarf H am iltonian w ith a_{0} replaced by $m \quad \frac{1}{2}$. Thus the energy eigenvalues of the H am iltonian $w i l l$ be the sam e as that of the operator $J^{+} J=J_{3}^{2} \quad J_{3} \quad J^{2}$. H ence, the energy is given by $E=m^{2} \quad m \quad j(j+1)$. Substituting $j=n \quad m$, one gets

$$
\begin{align*}
\mathrm{E}_{\mathrm{n}} & =m^{2} \quad \mathrm{n} \quad(\mathrm{n} \quad \mathrm{~m})^{2} \\
& =\left(m \frac{1}{2}\right)^{2} \quad \mathrm{n} \quad\left(\mathrm{~m} \frac{1}{2}\right)^{2}: \tag{17}
\end{align*}
$$

which is the sam e as eq. (13), w ith a replaced by $m \quad \frac{1}{2}$. Thus for this potential, as well as for the other three potentials m entioned above, there are actually an in nite num ber of potentials characterised by all allowed values of the param eter m that correspond to the sam e value of j and hence to the sam e energy E. H ence the nam e \potential algebra" (17,12])

C onclusion: The algebra of Shape Invariance plays an im portant role in the solvability of m ost exactly solvable problem s in quantum m echanics. Their spectrum can be easily generated sim ply by algebraic m eans. M any of these system s also have been show n to possess a potential algebra, which provides an altemate algebraic m ethod to determ ine the eigenvalues and eigenfunctions. A n obvious question is whether these are two unrelated algebraic m ethods or there is a link betw een them. For a subset of exactly solvable potentials, those w ith $R\left(a_{0}\right)$ linear in param eter a_{0}, we have show n the equivalence of their shape invariance property to an $S O(2,1)$ potential algebra. A s a concrete exam ple, we started w th the Scarf potential and show ed explicitly how shape invariance translates into the $S O(2,1)$ potential algebra. W e determ ined the spectra using the algebra of SO $(2,1)$ and showed them to be the sam e as that obtained from shape invariance.

H ow ever, we only worked w ith solvable models for which $R\left(J_{3}\right)$ is a linear function of J_{3}. There are m any system s for which the above is not true. A lso there were new Shape

Invariant problem s discovered in 1992 (目]) for which it is not possible to w rite the potential in closed form. It will be interesting to know whether there are potential algebras that describe these system, and whether they are connected to their Shape Invariance. These are open problem s and are currently under investigation.

O ne of us (A G) would like to thank the P hysics D epartm ent of the U niversity of Illinois for warm hospitality. W e w ould also like to thank D r. P rsanta Panigrahi for m any related discussion.

R eferences

[1] N atanzon, G . A. (1979): Teor. M at. F iz. 38, 219.
[2] Spiridonov, V. P. (1992) : Phys. R ev. Lett. 69, 298.
[3] B arclay, D ., D utt, R ., G angopadhyaya, A ., K hare, A., P agnam enta, A. and Sukhatm e, U . (1993): Phys. Rev. A 482786.
[4] G endenshtein, L. E. (1983): JETP Lett. 38, 356;
[5] G endenshtein, L. E., K rive, I. V . (1985) : Sov. P hys. U sp . 28, 645.
[6] C ooper, F., K hare, A., and Sukhatm e, U . (1995): Phys. Rep. 251, 268 and references therein.
[7] A Ihassid, Y ., G unsey, F. and Iachello, F. (1983): A nn. P hys. 148, 346.
[8] B arut, A .O., Inom ata, A.,W ilson, R . (1987): J.Phys. A :M ath. Gen. 20 4075; J. Phys. A: M ath. Gen. 204083.
[9] Engle eld, M J., Q uesne, C . (1987): J. Phys. A : M ath. Gen. 24827 (1987).
[10] Engle eld, M J. (1987): J. Phys. A : M ath. Gen. 283557.
[11] Tangerm an R D., T jon, J A . (1993): Phys. Rev. A 481089.
[12] W u J., A Ihassid, Y. (1990): Phys. Rev. A 31557.
[13] A dam s, B .G , C izeka, J., P aldus, J. (1987) : L ie A lgebraic M ethods A nd T heir A pplications to Simple Q uantum System s. (From the A dvances in Q uantum C hem istry, Vol. 19, E dited by Per-O lov Low din. A cadem ic P ress).

FIGURECAPTION:

FIG 1. Two dim ension plot show ing the allowed region form and j.

[^0]: ${ }^{1}$ e-m ail: agangop@ luc.edu, asim @uic.edu
 ${ }^{2}$ e-m ail: jn allow @ huc.edu
 ${ }^{3}$ e-m ail: sukhatm e@ uic.edu

