1,063 research outputs found
Dynamics of immersed molecules in superfluids
The dynamics of a molecule immersed in a superfluid medium are considered.
Results are derived using a classical hydrodynamic approach followed by
canonical quantization. The classical model, a rigid body immersed in
incompressible fluid, permits a thorough analysis; its effective Hamiltonian
generalizes the usual rigid-rotor Hamiltonian. In contrast to the free rigid
rotor, the immersed body is shown to have chaotic dynamics. Quantization of the
classical model leads to new and experimentally verifiable features. It is
shown, for instance, that chiral molecules can behave as "quantum propellers":
the rotational-translational coupling induced by the superfluid leads to a
nonzero linear momentum in the ground state. Hydrogen peroxide is a strong
candidate for experimental detection of this effect. The signature is a
characteristic splitting of rotational absorption lines. The 1_{01} --> 1_{10}
line in hydrogen peroxide, for example, is predicted to split into three lines
separated by as much as 0.01 cm^{-1}, which is about the experimental
linewidth.Comment: 10 pages, 3 figure
Interaction between static holes in a quantum dimer model on the kagome lattice
A quantum dimer model (QDM) on the kagome lattice with an extensive
ground-state entropy was recently introduced [Phys. Rev. B 67, 214413 (2003)].
The ground-state energy of this QDM in presence of one and two static holes is
investigated by means of exact diagonalizations on lattices containing up to
144 kagome sites. The interaction energy between the holes (at distances up to
7 lattice spacings) is evaluated and the results show no indication of
confinement at large hole separations.Comment: 6 pages, 3 figures. IOP style files included. To appear in J. Phys.:
Condens. Matter, Proceedings of the HFM2003 conference, Grenobl
Scattering-free plasmonic optics with anisotropic metamaterials
We develop an approach to utilize anisotropic metamaterials to solve one of
the fundamental problems of modern plasmonics -- parasitic scattering of
surface waves into free-space modes, opening the road to truly two-dimensional
plasmonic optics. We illustrate the developed formalism on examples of
plasmonic refractor and plasmonic crystal, and discuss limitations of the
developed technique and its possible applications for sensing and imaging
structures, high-performance mode couplers, optical cloaking structures, and
dynamically reconfigurable electro-plasmonic circuits
Naturally-phasematched second harmonic generation in a whispering gallery mode resonator
We demonstrate for the first time natural phase matching for optical
frequency doubling in a high-Q whispering gallery mode resonator made of
Lithium Niobate. A conversion efficiency of 9% is achieved at 30 micro Watt
in-coupled continuous wave pump power. The observed saturation pump power of
3.2 mW is almost two orders of magnitude lower than the state-of-the-art. This
suggests an application of our frequency doubler as a source of non-classical
light requiring only a low-power pump, which easily can be quantum noise
limited. Our theoretical analysis of the three-wave mixing in a whispering
gallery mode resonator provides the relative conversion efficiencies for
frequency doubling in various modes
Rules for Computing Symmetry, Density and Stoichiometry in a Quasi-Unit-Cell Model of Quasicrystals
The quasi-unit cell picture describes the atomic structure of quasicrystals
in terms of a single, repeating cluster which overlaps neighbors according to
specific overlap rules. In this paper, we discuss the precise relationship
between a general atomic decoration in the quasi-unit cell picture atomic
decorations in the Penrose tiling and in related tiling pictures. Using these
relations, we obtain a simple, practical method for determining the density,
stoichiometry and symmetry of a quasicrystal based on the atomic decoration of
the quasi-unit cell taking proper account of the sharing of atoms between
clusters.Comment: 14 pages, 8 figure
Stability of the hard-sphere icosahedral quasilattice
The stability of the hard-sphere icosahedral quasilattice is analyzed using
the differential formulation of the generalized effective liquid approximation.
We find that the icosahedral quasilattice is metastable with respect to the
hard-sphere crystal structures. Our results agree with recent findings by
McCarley and Ashcroft [Phys. Rev. B {\bf 49}, 15600 (1994)] carried out using
the modified weighted density approximation.Comment: 15 pages, 2 figures available from authors upon request, (revtex),
submitted to Phys. Rev.
Exact Solution of an Octagonal Random Tiling Model
We consider the two-dimensional random tiling model introduced by Cockayne,
i.e. the ensemble of all possible coverings of the plane without gaps or
overlaps with squares and various hexagons. At the appropriate relative
densities the correlations have eight-fold rotational symmetry. We reformulate
the model in terms of a random tiling ensemble with identical rectangles and
isosceles triangles. The partition function of this model can be calculated by
diagonalizing a transfer matrix using the Bethe Ansatz (BA). The BA equations
can be solved providing {\em exact} values of the entropy and elastic
constants.Comment: 4 pages,3 Postscript figures, uses revte
Hybrid-Entanglement in Continuous Variable Systems
Entanglement is one of the most fascinating features arising from
quantum-mechanics and of great importance for quantum information science. Of
particular interest are so-called hybrid-entangled states which have the
intriguing property that they contain entanglement between different degrees of
freedom (DOFs). However, most of the current continuous variable systems only
exploit one DOF and therefore do not involve such highly complex states. We
break this barrier and demonstrate that one can exploit squeezed cylindrically
polarized optical modes to generate continuous variable states exhibiting
entanglement between the spatial and polarization DOF. We show an experimental
realization of these novel kind of states by quantum squeezing an azimuthally
polarized mode with the help of a specially tailored photonic crystal fiber
Magnetic susceptibility and specific heat of the spin-1/2 Heisenberg model on the kagome lattice and experimental data on ZnCu3(OH)6Cl2
We compute the magnetic susceptibility and specific heat of the spin-1/2
Heisenberg model on the kagome lattice with high-temperature expansions and
exact diagonalizations. We compare the results with the experimental data on
ZnCu3(OH)6Cl2 obtained by Helton et al. [Phys. Rev. Lett. 98, 107204 (2007)].
Down to k_BT/J~0.2, our calculations reproduce accurately the experimental
susceptibility, with an exchange interaction J~190K and a contribution of 3.7%
of weakly interacting impurity spins. The comparison between our calculations
of the specific heat and the experiments indicate that the low-temperature
entropy (below ~20K) is smaller in ZnCu3(OH)6Cl2 than in the kagome Heisenberg
model, a likely signature of other interactions in the system.Comment: Minor revisions in the text and references. To appear in Eur. Phys.
J.
- …