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Exact Solution of an Octagonal Random Tiling Model

Jan de Gier* and Bernard Nienhuis†

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands

(Received 16 November 1995)

We consider the two-dimensional random tiling model introduced by Cockayne, i.e., the ens
of all possible coverings of the plane without gaps or overlaps with squares and various hexago
the appropriate relative densities the correlations have eightfold rotational symmetry. We reform
the model in terms of a random tiling ensemble with identical rectangles and isosceles tria
The partition function of this model can be calculated by diagonalizing a transfer matrix usin
BetheAnsatz(BA). The BA equations can be solved providingexactvalues of the entropy and elasti
constants.

PACS numbers: 61.44.Br, 05.20.–y, 64.70.Rh
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Since the discovery of quasicrystals, materials w
noncrystallographic rotational symmetry and quasipe
odic translational order have been modeled by tilin
A tiling model consists of a set of elementary buildin
blocks, tiles, that cover space without gaps or overla
One of the main questions concerning quasicrystalline
loys is their thermodynamic stability. It has been argu
by several authors [1,2] that this may result partly fro
entropy associated with local random rearrangement
the tiles. One is then naturally led to study ensembles
“random tilings” [2].

It has been known for some time [3,4] that in tw
dimensions the square-triangle random tiling (RT) mod
which has a twelvefold rotational symmetry, can
solved, i.e., its entropy and phason elastic constants
be calculated exactly. In this Letter we give the results
such a calculation for an eightfold symmetric RT mode

The model under consideration consists of squares
hexagons of arbitrary size, and was first introduced
Cockayne [5]. The hexagons are built out of rectang
with sides1 :

p
2 and a pair of isosceles and rectangu

triangles. The squares can be viewed as two triang
The model is therefore equivalent to a triangle-rectan
random tiling with an extra Boltzmann weight such th
the two ways two triangles form a square are counted
one, i.e.,

There is a repulsive potential ofkT log2 for each pair
of triangles adjacent by their long edge. Since t
configuration of vertices does not depend on which of
two diagonals is drawn in a square, the partition sum
precisely the sum of all vertex configurations, rather th
of all tilings.

It is interesting to note that the perfect quasicrystall
square-hexagon tiling generated by an inflation rule [5
in one-to-one correspondence with the binary octago
tiling of squares and rhombi. Although the random tilin
ensemble of the latter set of tiles has been studied
0031-9007y96y76(16)y2918(4)$10.00
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no exact solution in the quasicrystalline phase has b
found yet.

As in the square triangle tiling, we can set up
transfer matrix. This is done by decomposing the tili
into layers. Different layers are bounded by the sh
horizontal edges, the horizontal diagonals of the squa
and the almost horizontal diagonals of the6

p

4 tilted
rectangles. In addition, the layer edges cut the triang
and rectangles with a vertical long edge in half. In th
way the tiles are deformed in such a way that the verti
of the tiling form a subset of those of the square lattic

FIG. 1. (a) Patch of the tiling model. (b) Correspondin
patch on the lattice. Bold solid lines are domain walls
horizontal short edges referred to ass walls in the text. Bold
dashed lines represent thel walls of horizontal long edges.
© 1996 The American Physical Society
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see Fig. 1(b). The horizontal diagonals of the squa
are denoted by the dashed lines in Fig. 1(a). A ma
elementTij of the transfer matrixT is 0 if layer j cannot
be followed by layeri. Otherwise, it is given by the
statistical weight of the layeri. In the following we
will denote the tilted rectangles byR6 and the rectangles
with the short and long horizontal edges byRs and Rl,
respectively.

Because different tiles of the original tiling are mapp
onto the same shapes on the square lattice, we hav
decorate the new configurations. This is done with b
dashed and solid lines, see Fig. 1(b). Thus it is cl
that the horizontal short and long edges of the origi
tiling form domain walls, which we denote by types and
l, respectively. Between two layer edges on the squ
lattice, thes walls step one unit to the left and thel walls
do not move. Two walls may cross in one of two way
(i) The s wall may jump over thel wall moving two
places to the left and thereby creating a rectangleRl. (ii)
Over two layers, the walls may exchange places creat
a rectangleRs. In the latter case the crossing therefo
is completed after application of the transfer matrix twic
It may also happen that two walls of types and one of
type l cross simultaneously over two layers. Thel wall
and thes wall nearest to it then exchange place, while t
seconds wall jumps over both these walls moving thre
places to the left, creating a rectangleR2.

We can express the tile densities in terms of the dom
wall densities. We shall denote the horizontal size
the tiling by L and the corresponding system size of t
lattice model byN. Let Dls ­ Rl 2 Rs ­ 0, i.e., both
types of collisions of two domain walls occur with th
same frequency, and letns andnl be the number ofs and
l walls. Apply the transfer matrixp ­ 2N 2 ns times
on some initial configuration of domain walls att ­ 0
on the lattice, and suppose that both types of collisi
occur for everypair of s and l walls. The final state
at t ­ 2N 2 ns will then be the same configuration o
domain walls as the initial one shifted bynl . The total
number of rectangles and triangles per layer can then
calculated to be

nrect ­ N 2 ns 2 nl 1 2nsnlyp ,

ntri ­ 2sns 1 nld 2 6nsnlyp .
(1)

The tile densities that belong to the quasicrystalline ph
are nrectyN ­ 6 2 4

p
2, ntriyN ­ 12

p
2 2 16, corre-

sponding to an area fraction of trianglesat ­ 1y2.
As a function of the domain wall densities, the mod

displays two incommensurate phases. A fourfold sy
metric phase is formed in the high density region,at .

1y2, where the triangles form octagonal and square c
bounded by domain walls consisting of rectangles. Th
is a twofold symmetric phase in the low density regi
where the rectangles form rectangular cells bounded
domain walls consisting of triangles.
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Like the square-triangle tiling, this tiling has the irro
tational property [7] which implies that, according to th
random tiling hypotheses, the entropy densitysa ­ SyA
has the following form:

sa ­ sa,0 2
1
2 KmsTrEd2 1

1
2 Kj detE 1 O sE3d , (2)

whereE is the phason strain tensor. The conditions o
the elastic constants forE ­ 0 to be a local maximum are

Km . 0, Kj . 0, 4Km 2 Kj . 0 . (3)

We denote the deviations of the ideal tile densities by

dls ­ nl

p
2 2 ns , (4)

D6 ­ N 2 nl 2 ns . (5)

The quadratic forms in (2) can be expressed in these:

sTrEd2 ­
1

L2
f2dls 2 D6s2 2

p
2 d 2 Dlss1 1

p
2 dg2,

detE ­
1

L2
hd2

ls 2 s2 2
p

2 dD6dls 2 2D2
6

p
2 (6)

2 s1 1
p

2 dDlsfdls 2 s1 2 1y
p

2 dD6gj .

The quantitiesns and nl are conserved by the action o
the transfer matrixT. To control the average value o
Dls, the tilesRs andRl are given a weight exps2fd and
expsfd, respectively. Furthermore, as the tilesRs and
R1 in the lattice representation have an area that is tw
that of the other two transformed rectangles, we have
introduce a chemical potential for them to compensate
this asymmetry. The tilesRs and R1 therefore get an
extra weight expshd.

The free energy per layer of the lattice model is give
by the logarithm of the largest eigenvalue ofT:

Fsns, nl , fd ­ 2 logL

­ 2S 2 fDls 2 hsnRs 1 nR1
d . (7)

We denote the horizontal coordinate of theith s wall by
ji and of thekth l wall by zk . The vertical coordinate is
denoted byt. Let li be the total number ofl walls to the
left of the ith s wall, then the quantityji 1 t 1 li mod2
is conserved for everys wall. This means that thes walls
lie on a sublattice structure and split up into two kind
odd and even ones. Denote their coordinates byxi and
yj , respectively.

The eigenvectors ofT as a function of the coordinates
x, y, andz of the domain walls are of the BetheAnsatz
form. If all the domain walls are separated, theAnsatzisX

p,m,r
AsGd

ns,oY
i­1

uxi
pi

ns,eY
j­1

y
yj
mj

nlY
k­1

wzk
rk

. (8)

The form of the eigenvector for configurations whe
domain walls cross can be found by application ofT
on (8). Here,wk ­ expsiqkd, ui ­ expsipo,id, andyj ­
expsipe,jd are the exponentiated momenta; andr, p , and
m are the permutations of these belonging to thel and odd
2919
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and evens walls, respectively. The amplitudesA depend
on the permutationsr, p, andm and on the configuration
of the various domain walls. These together are co
in a vectorG in the following way. Letr be the vector
of coordinatesxi , yj, andzk of all domain walls, ordered
so thatrm , rm11. The entries ofG are the elements o
the permutationsp , m, andr. The order of successio
in G of elements taken fromp , m, and r matches that
of the elements ofx, y, andz, respectively, inr. So, for
example, in the case of an odds wall at x1 and anl wall
at z1 we would have eitherx1 , z1 or x1 . z1. In the
first case we writer ­ sx1, z1d with G ­ sp1, r1d, while
in the second caser ­ sz1, x1d andG ­ s r1, p1d.

When the different domain walls are separated,
transfer matrix shifts alls walls to the left and leaves alll
walls at rest, so the eigenvalue ofT must be

L ­
ns,oY
i­1

ui

ns,eY
j­1

yj . (9)

Inspecting the eigenvalue equations for the case that as-
and anl-domain wall collide, one sees that the amplitud
A before and after the collision must satisfy the followin
relation for (8) to be an eigenvector ofT:

As. . . pi , rk . . .d
As. . . rk , pi . . .d

­ sefupi
1 eh2fu21

pi
w21

rk
d . (10)

A same relation holds for the amplitudes withpi replaced
by mj andu replaced byy. From configurations involv-
ing three domain walls one deduces that interchang
domain walls of the same kind in the amplitude giv
a factor21, and that interchanging an odd and an ev
s wall leaves the amplitude unchanged. The eigenva
equations therefore do not mix the momenta of the e
and odds walls. It turns out that all relations among am
plitudes involving more than two domain walls factoriz
into the ones already mentioned. These relations there
suffice to make (8) an eigenvector ofT. Imposing peri-
odic boundary conditions and eliminating the amplitud
A from the eigenvalue equations, one gets the follow
equations for the momenta:

uL
i ­ s21dns,o21

nlY
k­1

sefui 1 eh2fu21
i w21

k d ,

yL
j ­ s21dns,e21

nlY
k­1

sefyj 1 eh2fy21
j w21

k d ,

w2L
k ­ s21dnl21

ns,oY
i­1

sefui 1 eh2fu21
i w21

k d
(11)

3

ns,eY
j­1

sefyj 1 eh2fy21
j w21

k d .

These are the so-called BetheAnsatzequations (BAE).
Like the BAE for the square-triangle tiling, these equ
tions can be solved along a line in the thermodynam
limit for the largest eigenvalue. The details of this calc
2920
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lation, which resembles the one by Kalugin for the squa
triangle tiling [4], will be published elsewhere. Here w
give only the results.

The entropy can be calculated exactly in the ent
regime at $ 1y2, D6 ­ Dls ­ 0. In this region the
three curves formed by the solutions of the BAE ha
the same limit point. After a change of variables, th
limit point can be written in the notation of Kalugin a
b ­ ijbjeig . The tile densities and the area fraction c
be expressed ing:

nlyN ­ 1 2 nsyN ­
1 2

p
2 singy2

1 1
p

2 cosgy2
, (12)

at ­ s
p

2 1 1d
p

2 2 cosgy2
1 1 cosgy2

. (13)

The entropy per area of the square-hexagon random ti
in the regime1y2 # at # 1 in terms ofg is

sa ­
2 1

p
2

4 cos2gy4
flogs4y cosgd

1 cosspy4 1 gy2d log tanspy8 1 gy4d

1 cosspy4 2 gy2d log tanspy8 2 gy4dg . (14)

The entropy has its maximum atg ­ 0. Expandingsa

up to second order ing results in

sa ­ sa,0 2 g2 1 1
p

2

32
p

2

3 f4 2 log4 2
p

2 logs1 1
p

2 dg , (15)

where the residual entropy atg ­ 0 is given by

sa,0 ­
1 1

p
2

2
p

2
flog4 2

p
2 logs1 1

p
2 dg

ø 0.1193642186 . . . . (16)

As in the square triangle tiling, the entropy is a conv
function of the area fractionat, see Fig. 2.

In the twofold phasesat , 1y2d this exact calculation
fails because the solution curves do not have the sa
limit point. Nevertheless, it is possible to calculate t

FIG. 2. sa as a function ofat. The solid line corresponds
to the exact solution (14). The dots are numerical results
N ­ 198.
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lowest order correction to the entropy. Withe ­ D6yN
this is given by

sa ­ sa,0 2 eg
1

16
p

2
f4 2 log4 2

p
2 logs1 1

p
2 dg

2 e2 1 1
p

2
8

flog4 1
p

2 logs1 1
p

2 dg . (17)

This expression gives the exact slope of the numer
curve shown in Fig. 2 forat " 1y2:

dsa

dat

Ç
at "1y2

­

p
2 2 1
p

2
flog4 1

p
2 logs1 1

p
2 dg . (18)

Expanding Eq. (12) up to first order ing and using (2)–
(6), it is straightforward to find the elastic constantsKm

andKj from (15) and (17). Their numerical values are

Km ­ 0.2842712 . . . , Kj ­ 0.7366252 . . . . (19)

Since the two elastic constants fulfill the relations (
the quasiperiodic eightfold symmetric state is entropica
stable.

In this paper we successfully apply the BetheAnsatz
to an octagonal random tiling model. The BAE (1
are solved to findexact values of the entropy and
elastic constants. The model shows qualitatively the sa
al

),
ly

)

e

behavior as the square-triangle tiling. It is not yet cle
how generic the solvability of these two tilings is, bu
we have discovered that a tenfold symmetric tiling
rectangles and triangles does admit a BetheAnsatz. It
appears, however, from numerical calculations that th
solutions do not allow for an exact solution using th
method of Kalugin which is employed in this paper.

We thank Chris Henley and Mike Widom for providin
us with some useful information. This work was su
ported by FOM, part of NWO, Institute for Dutch Scien
tific Research.
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