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Exact Solution of an Octagonal Random Tiling Model

Jan de Gier* and Bernard Nienhtis

Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65,
1018 XE Amsterdam, The Netherlands
(Received 16 November 1995

We consider the two-dimensional random tiling model introduced by Cockayne, i.e., the ensemble
of all possible coverings of the plane without gaps or overlaps with squares and various hexagons. At
the appropriate relative densities the correlations have eightfold rotational symmetry. We reformulate
the model in terms of a random tiling ensemble with identical rectangles and isosceles triangles.
The partition function of this model can be calculated by diagonalizing a transfer matrix using the
BetheAnsatz(BA). The BA equations can be solved providiegactvalues of the entropy and elastic
constants.

PACS numbers: 61.44.Br, 05.20.-y, 64.70.Rh

Since the discovery of quasicrystals, materials withno exact solution in the quasicrystalline phase has been
noncrystallographic rotational symmetry and quasiperifound yet.
odic translational order have been modeled by tilings. As in the square triangle tiling, we can set up a
A tiling model consists of a set of elementary building transfer matrix. This is done by decomposing the tiling
blocks, tiles, that cover space without gaps or overlapsnto layers. Different layers are bounded by the short
One of the main questions concerning quasicrystalline alhorizontal edges, the horizontal diagonals of the squares,
loys is their thermodynamic stability. It has been arguecand the almost horizontal diagonals of the7 tilted
by several authors [1,2] that this may result partly fromrectangles. In addition, the layer edges cut the triangles
entropy associated with local random rearrangements @&nd rectangles with a vertical long edge in half. In this
the tiles. One is then naturally led to study ensembles ofvay the tiles are deformed in such a way that the vertices
“random tilings” [2]. of the tiling form a subset of those of the square lattice,
It has been known for some time [3,4] that in two
dimensions the square-triangle random tiling (RT) model,
which has a twelvefold rotational symmetry, can be (a)
solved, i.e., its entropy and phason elastic constants can /" N /N N 6
be calculated exactly. In this Letter we give the resultsof ¢ N\ \ /N r—f-->
such a calculation for an eightfold symmetric RT model.
The model under consideration consists of squares and
hexagons of arbitrary size, and was first introduced by
Cockayne [5]. The hexagons are built out of rectangles
with sidesl : /2 and a pair of isosceles and rectangular < N\ \
triangles. The squares can be viewed as two triangles. N\ \ X7
The model is therefore equivalent to a triangle-rectangle
random tiling with an extra Boltzmann weight such that
the two ways two triangles form a square are counted as (b)

one, i.e., e s q> _ <> |

There is a repulsive potential dfT log2 for each pair
of triangles adjacent by their long edge. Since the
configuration of vertices does not depend on which of the
two diagonals is drawn in a square, the partition sum is
precisely the sum of all vertex configurations, rather than
of all tilings.

It is interesting to note that the perfect quasicrystalline

$quare-hexag0n tiling generated l_i)y an inflgtion rule 5] iﬁ:IG. 1. (a) Patch of the tiling model. (b) Corresponding
in one-to-one correspondence with the binary OCtagonadatch on the lattice. Bold solid lines are domain walls of

tiling of squares and rhombi. Although the random tiling horizontal short edges referred to asvalls in the text. Bold
ensemble of the latter set of tiles has been studied [6fashed lines represent thavalls of horizontal long edges.
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see Fig. 1(b). The horizontal diagonals of the squares Like the square-triangle tiling, this tiling has the irro-

are denoted by the dashed lines in Fig. 1(a). A matriXational property [7] which implies that, according to the

elementT;; of the transfer matrid is 0 if layer j cannot  random tiling hypotheses, the entropy density = S/A

be followed by layeri. Otherwise, it is given by the has the following form:

statistical weight of the layei. In the following we _ 1 2, 1 3

will denote the tilted rectangles k¥ and the rectangles T = 0ap = 7KL (TrE)" + 5K, delf + O(E7), (2)

with the short and long horizontal edges By andR;,,  whereE is the phason strain tensor. The conditions on

respectively. the elastic constants fd = 0 to be a local maximum are
Because different tiles of the original tiling are mapped K, >0, K: >0, 4K, — K; > 0. (3)

onto the same shapes on the square lattice, we have to . ] ) N

decorate the new configurations. This is done with boldVe denote the deviations of the ideal tile densities by

dashed and solid lines, see Fig. 1(b). Thus it is clear 81 = mN2 — ny, (4)
that the horizontal short and long edges of the original
tiling form domain walls, which we denote by typeand Ar =N —n; — ny. 5)

[, respectively. Between two layer edges on the squarg
lattice, thes walls step one unit to the left and thevalls |
do not move. Two walls may cross in one of two ways: 2 L _ _ _ 2
() The s wall may jump over thel wall moving two (TrE) L? 261 = 422 = V2) = A1 + V)P,
places to the left and thereby creating a rectamyle (ii) 1

Over two layers, the walls may exchange places creating detE = E{&Zs - 2 - V2)A:8, —203V2  (6)
a rectangleRr,. In the latter case the crossing therefore

is completed after application of the transfer matrix twice. — (1 + V2)Au[8; — (1 = 1/¥2)A=T.

It may also happen that two walls of typeand one of  The guantitiesr, andn; are conserved by the action of
type [ cross simultaneously over two layers. Thevall — {he transfer matrixT. To control the average value of

and thes wall nearest to it then exchange place, while theAlY the tilesR, andR, are given a weight exp-¢) and
seconds wall jumps over both these walls moving three ekr(gb), respéctively. Furthermore, as the til& and

places to the left, creating a rectangle. 'R, in the lattice representation have an area that is twice
We can express the tile densities in terms of the domaifh4; of the other two transformed rectangles, we have to

wall densities. We shall denote the horizontal size Ofiyiroquce a chemical potential for them to compensate for
thel tiling by L and the corresponding system size of theyhis asymmetry. The tile®, and R, therefore get an
lattice model byN. Let A, = R, — R, = 0, i.e., both extra weight expn). )

types of collisions of two domain walls occur with the — The free energy per layer of the lattice model is given
same frequency, and le{ andn; be the number of and by the logarithm of the largest eigenvalue'bf
[ walls. Apply the transfer matrip = 2N — n, times

on some initial configuration of domain walls at= 0 F(ng,n;, ¢) = —logA
on the lattice, and suppose that both types of collisions — —S — A, — nlng. + nz.). ()

occur for everypair of s and/ walls. The final state - . )
att = 2N — n, will then be the same configuration of _ We denote the horizontal coordinate of tties wall by

domain walls as the initial one shifted by. The total i and of thekth / wall by z. The vertical coordinate is
number of rectangles and triangles per layer can then pgenoted by. Let/; be the total number af walls to the

he quadratic forms in (2) can be expressed in these:

calculated to be !eft of the ith s wall, then the qqantitf,- + ¢t + I; mod
is conserved for every wall. This means that thewalls
et = N — ng — n; + 2n4n;/p, lie on a sublattice structure and split up into two kinds:

(1) odd and even ones. Denote their coordinates:bgnd
yj, respectively.

The tile densities that belong to the quasicrystalline phase The eigenvectors df as a function of the coordinates
are npe/N = 6 — 442, nyi/N = 1242 — 16, corre- % Vs andz of the domain walls are of the Bethfnsatz

nyi = 2(ng + n;) — 6ngn;/p .

sponding to an area fraction of triangles = 1,/2. form. If all the domain walls are separated, thesatzs
As a function of the domain wall densities, the model 5 oy

displays two incommensurate phases. A fourfold sym- W%pA(r) 1_11”74[ 1_11 Uk; kl_ll o (8)
S 1= j= =

metric phase is formed in the high density region,>
1/2, where the triangles form octagonal and square cell§he form of the eigenvector for configurations where
bounded by domain walls consisting of rectangles. Therélomain walls cross can be found by application Tof
is a twofold symmetric phase in the low density regionon (8). Herew; = expligi), u; = explip,,;), andv; =
where the rectangles form rectangular cells bounded bgxp(ip. ;) are the exponentiated momenta; gndr, and
domain walls consisting of triangles. u are the permutations of these belonging toithed odd
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and evens walls, respectively. The amplituddsdepend lation, which resembles the one by Kalugin for the square-
on the permutationg, 7, andu and on the configuration triangle tiling [4], will be published elsewhere. Here we
of the various domain walls. These together are codedive only the results.

in a vectorI' in the following way. Letr be the vector The entropy can be calculated exactly in the entire
of coordinatesy;, y;, andz; of all domain walls, ordered regime a; = 1/2, A+ = A;; = 0. In this region the

so thatr,, < r,+;. The entries ofl” are the elements of three curves formed by the solutions of the BAE have
the permutationsr, u, andp. The order of succession the same limit point. After a change of variables, this
in I' of elements taken fromr, u, and p matches that limit point can be written in the notation of Kalugin as
of the elements of, y, andz, respectively, inr. So, for b = i|b|e!”. The tile densities and the area fraction can
example, in the case of an oddvall at x; and an/ wall  be expressed ity:

at z; we would have either; < z; or x; > z;. In the 1| — V2siny/2
first case we writar = (x1, z;) with T = (71, p1), while n/N=1—-n,/N = \/_— (12)
in the second case = (z;,x;) andT" = (py, m). I + v2cosy/2

When the different domain walls are separated, the a, = (V2 + 1)\/5 — cosy/2 (13)
transfer matrix shifts alf walls to the left and leaves all ! 1 + cosy/2
walls at rest, so the eigenvalue Bfmust be The entropy per area of the square-hexagon random tiling

Mso  Mse in the regimé/2 = «, = 1 in terms ofy is
Azl_[ull_[vl (9) 2+\/§
=L j=1 « = ———= - [log(4/co
o 4co§7/4[ g(4/ cosy)
Inspecting the eigenvalue equations for the case that an
and an/-domain wall collide, one sees that the amplitudes +codw/4 + y/2)log tan(w /8 + y/4)
A be_fore and after the co_IIision must satisfy the following +codw/4 — v/2)log tan(7/8 — y/4)]. (14)
relation for (8) to be an eigenvector Bt The entropy has its maximum at= 0. Expandingo,
Ty Pl up to second order ity results in
A( i, Pk ) _ (e(ﬁuﬂ_i + en—(ﬁu;.lw;kl). (10) p Iy
Al..pp,mi...) i 21+\/§
Tq Ta0 — Y

A same relation holds for the amplitudes with replaced 3242
by u; andu replaced byv. From configurations involv- X [4 — log4 — +/2log(1 + +/2)],  (15)

ing three domain walls one deduces that interchangin%h h idual ent t= 0is ai b
domain walls of the same kind in the amplitude gives ere the residua jﬂrODya IS given by
a factor —1, and that interchanging an odd and an even 1+ 2

s wall leaves the amplitude unchanged. The eigenvalue Ta0 = 22 [logt — \/Elog(l +32)]
equations therefore do not mix the momenta of the even .

and odds walls. It turns out that all relations among am- =~ 0.1193642186...... (16)
plitudes involving more than two domain walls factorize As in the square triangle tiling, the entropy is a convex
into the ones already mentioned. These relations therefofenction of the area fraction,, see Fig. 2.

suffice to make (8) an eigenvector ®f Imposing peri- In the twofold phasda, < 1/2) this exact calculation
odic boundary conditions and eliminating the amplitudedails because the solution curves do not have the same
A from the eigenvalue equations, one gets the followindimit point. Nevertheless, it is possible to calculate the
equations for the momenta:

L ngo—1 - ) n—-¢. —1 -1 0.14
uy = (—1)" l_[(e u + e %u; wyp ),
k=1 0.12
ny
ij = (=)t l_[(e¢vj + e"7¢v;1w,:l), 0.10
=1 (1) 0.08
we b= (=1pm! l_[(e¢ui + e utw Y 0.06
i=1
ne 0.04
X l_[(e¢vj + e"*"}v;lw,:l). 0.02
j=l1 .
These are the so-called Bethesatzequations (BAE). V=01 0z 03 04 05 056 07 08 0.9 L0

L_ike the BAE for the square—tr'iang_le tiling, these €4Ua-rig 2. 4, as a function ofa,. The solid line corresponds
tions can be solved along a line in the thermodynamiGo the exact solution (14). The dots are numerical results for
limit for the largest eigenvalue. The details of this calcu-N = 198.
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lowest order correction to the entropy. Wigh= A./N  behavior as the square-triangle tiling. It is not yet clear
this is given by how generic the solvability of these two tilings is, but
1 _ we have discovered that a tenfold symmetric tiling of
0= 0,0 — €y—>=[4 — logd — V2 log(1 + x/f)] rectangles and triangles does admit a Beftmsatz It

\}E\/Z appears, however, from numerical calculations that their

1+ 2 solutions do not allow for an exact solution using the

_ 21t N
€ 8 [log4 + \/Elog(l +V2)). (17) method of Kalugin which is employed in this paper.

This expression gives the exact slope of the numerical We thank Chris Henley and Mike Widom for providing
curve shown in Fig. 2 for, 1 1/2: us with some useful information. This work was sup-

N ported by FOM, part of NWO, Institute for Dutch Scien-

doq _ V2 [logd + v2log(1 + +/2)]. (18) tific Research.
da; a2 V2

Expanding Eq. (12) up to first order ip and using (2)—

(6), it is straightforward to find the elastic constaikis *Electronic address: degier@phys.uva.nl
andK; from (15) and (17). Their numerical values are "Electronic address: nienhuis@phys.uva.nl
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