586 research outputs found

    Epitaxial strain effects in the spinel ferrites CoFe2O4 and NiFe2O4 from first principles

    Full text link
    The inverse spinels CoFe2O4 and NiFe2O4, which have been of particular interest over the past few years as building blocks of artificial multiferroic heterostructures and as possible spin-filter materials, are investigated by means of density functional theory calculations. We address the effect of epitaxial strain on the magneto-crystalline anisotropy and show that, in agreement with experimental observations, tensile strain favors perpendicular anisotropy, whereas compressive strain favors in-plane orientation of the magnetization. Our calculated magnetostriction constants λ100\lambda_{100} of about -220 ppm for CoFe2O4 and -45 ppm for NiFe2O4 agree well with available experimental data. We analyze the effect of different cation arrangements used to represent the inverse spinel structure and show that both LSDA+U and GGA+U allow for a good quantitative description of these materials. Our results open the way for further computational investigations of spinel ferrites

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    First principles study of the influence of (110)-oriented strain on the ferroelectric properties of rutile TiO2_2

    Full text link
    We use first principles density functional theory to investigate the softening of polar phonon modes in rutile TiO2_2 under tensile (110)-oriented strain. We show that the system becomes unstable against a ferroelectric distortion with polarization along (110) for experimentally accessible strain values. The resulting polarization, estimated from the Born effective charges, even exceeds the bulk polarization of BaTiO3_3. Our calculations demonstrate the different strain dependence of polar modes polarized along (110) and (001) directions, and we discuss the possibility of strain engineering the polarization direction, and the resulting dielectric and piezoelectric response, in thin films of TiO2_2 grown on suitable substrates.Comment: 5 pages, 3 figures, 1 tabl

    Influence of strain and oxygen vacancies on the magnetoelectric properties of multiferroic bismuth ferrite

    Full text link
    The dependencies on strain and oxygen vacancies of the ferroelectric polarization and the weak ferromagnetic magnetization in the multiferroic material bismuth ferrite, BiFeO_3, are investigated using first principles density functional theory calculations. The electric polarization is found to be rather independent of strain, in striking contrast to most conventional perovskite ferroelectrics. It is also not significantly affected by oxygen vacancies, or by the combined presence of strain and oxygen vacancies. The magnetization is also unaffected by strain, however the incorporation of oxygen vacancies can alter the magnetization slightly, and also leads to the formation of Fe^{2+}. These results are discussed in light of recent experiments on epitaxial films of BiFeO_3 which reported a strong thickness dependence of both magnetization and polarization.Comment: 9 pages, 3 figure

    Origin of ferroelectricity in the multiferroic barium fluorides BaMF4

    Full text link
    We present a first principles study of the series of multiferroic barium fluorides with the composition BaMF4, where M is Mn, Fe, Co, or Ni. We discuss trends in the structural, electronic, and magnetic properties, and we show that the ferroelectricity in these systems results from the "freezing in" of a single unstable polar phonon mode. In contrast to the case of the standard perovskite ferroelectrics, this structural distortion is not accompanied by charge transfer between cations and anions. Thus, the ferroelectric instability in the multiferroic barium fluorides arises solely due to size effects and the special geometrical constraints of the underlying crystal structure.Comment: 8 pages, 6 figures, 3 table

    Soft x-ray spectroscopy measurements of the p-like density of states of B in MgB2 and evidence for surface boron oxides on exposed surfaces

    Full text link
    Soft X-ray absorption and fluorescence measurements are reported for the K-edge of B in MgB2. The measurements confirm a high density of B pxy(sigma)-states at the Fermi edge and extending to approximately 0.9 eV above the edge. A strong resonance is observed in elastic scattering through a core-exciton derived from out-of-plane pz(pi*)-states. Another strong resonance, observed in both elastic and inelastic spectra, is identified as a product of surface boron oxides.Comment: 7 pages total, 4 figures, submitted to Phys. Rev. Let

    Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3

    Full text link
    In this article we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can "switch on" the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization M is coupled to the polarization P via a trilinear free energy contribution of the form P(M x L), where L is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue on Multiferroic

    First-principles study of spontaneous polarization in multiferroic BiFeO3_3

    Get PDF
    The ground-state structural and electronic properties of ferroelectric BiFeO3_3 are calculated using density functional theory within the local spin-density approximation and the LSDA+U method. The crystal structure is computed to be rhombohedral with space group R3cR3c, and the electronic structure is found to be insulating and antiferromagnetic, both in excellent agreement with available experiments. A large ferroelectric polarization of 90-100 ÎĽ\muC/cm2^2 is predicted, consistent with the large atomic displacements in the ferroelectric phase and with recent experimental reports, but differing by an order of magnitude from early experiments. One possible explanation is that the latter may have suffered from large leakage currents. However both past and contemporary measurements are shown to be consistent with the modern theory of polarization, suggesting that the range of reported polarizations may instead correspond to distinct switching paths in structural space. Modern measurements on well-characterized bulk samples are required to confirm this interpretation.Comment: (9 pages, 5 figures, 5 tables

    First principles study of the multiferroics BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}: Structure, polarization, and magnetic ordering temperature

    Full text link
    We present results of an {\it ab initio} density functional theory study of three bismuth-based multiferroics, BiFeO3_{3}, Bi2_{2}FeCrO6_{6}, and BiCrO3_{3}. We disuss differences in the crystal and electronic structure of the three systems, and we show that the application of the LDA+UU method is essential to obtain realistic structural parameters for Bi2_{2}FeCrO6_{6}. We calculate the magnetic nearest neighbor coupling constants for all three systems and show how Anderson's theory of superexchange can be applied to explain the signs and relative magnitudes of these coupling constants. From the coupling constants we then obtain a mean-field approximation for the magnetic ordering temperatures. Guided by our comparison of these three systems, we discuss the possibilities for designing a multiferroic material with large magnetization above room temperature.Comment: 8 Pages, 4 Figure

    Towards a microscopic theory of toroidal moments in bulk periodic crystals

    Full text link
    We present a theoretical analysis of magnetic toroidal moments in periodic systems, in the limit in which the toroidal moments are caused by a time and space reversal symmetry breaking arrangement of localized magnetic dipole moments. We summarize the basic definitions for finite systems and address the question of how to generalize these definitions to the bulk periodic case. We define the toroidization as the toroidal moment per unit cell volume, and we show that periodic boundary conditions lead to a multivaluedness of the toroidization, which suggests that only differences in toroidization are meaningful observable quantities. Our analysis bears strong analogy to the modern theory of electric polarization in bulk periodic systems, but we also point out some important differences between the two cases. We then discuss the instructive example of a one-dimensional chain of magnetic moments, and we show how to properly calculate changes of the toroidization for this system. Finally, we evaluate and discuss the toroidization (in the local dipole limit) of four important example materials: BaNiF_4, LiCoPO_4, GaFeO_3, and BiFeO_3.Comment: replaced with final (published) version, which includes some changes in the text to improve the clarity of presentatio
    • …
    corecore