2,349 research outputs found
Mechanoregulation of bone remodeling and healing as inspiration for self-repair in materials
The material bone has attracted the attention of material scientists due to its fracture resistance and ability to self-repair. A mechanoregulated exchange of damaged bone using newly synthesized material avoids the accumulation of fatigue damage. This remodeling process is also the basis for structural adaptation to common loading conditions, thereby reducing the probability of material failure. In the case of fracture, an initial step of tissue formation is followed by a mechanobiological controlled restoration of the pre-fracture state. The present perspective focuses on these mechanobiological aspects of bone remodeling and healing. Specifically, the role of the control function is considered, which describes mechanoregulation as a link between mechanical stimulation and the local response of the material through changes in structure or material properties. Mechanical forces propagate over large distances leading to a complex non-local feedback between mechanical stimulation and material response. To better understand such phenomena, computer models are often employed. As expected from control theory, negative and positive feedback loops lead to entirely different time evolutions, corresponding to stable and unstable states of the material system. After some background information about bone remodeling and healing, we describe a few representative models, the corresponding control functions, and their consequences. The results are then discussed with respect to the potential design of synthetic materials with specific self-repair properties
Spin blockade in ground state resonance of a quantum dot
We present measurements on spin blockade in a laterally integrated quantum
dot. The dot is tuned into the regime of strong Coulomb blockade, confining ~
50 electrons. At certain electronic states we find an additional mechanism
suppressing electron transport. This we identify as spin blockade at zero bias,
possibly accompanied by a change in orbital momentum in subsequent dot ground
states. We support this by probing the bias, magnetic field and temperature
dependence of the transport spectrum. Weak violation of the blockade is
modelled by detailed calculations of non-linear transport taking into account
forbidden transitions.Comment: 4 pages, 4 figure
Microwave spectroscopy on a double quantum dot with an on-chip Josephson oscillator
We present measurements on microwave spectroscopy on a double quantum dot
with an on-chip microwave source. The quantum dots are realized in the
two-dimensional electron gas of an AlGaAs/GaAs heterostructure and are weakly
coupled in series by a tunnelling barrier forming an 'ionic' molecular state.
We employ a Josephson oscillator formed by a long Nb/Al-AlO/Nb junction as
a microwave source. We find photon-assisted tunnelling sidebands induced by the
Josephson oscillator, and compare the results with those obtained using an
externally operated microwave source.Comment: 6 pages, 4 figure
An electrostatically defined serial triple quantum dot charged with few electrons
A serial triple quantum dot (TQD) electrostatically defined in a GaAs/AlGaAs
heterostructure is characterized by using a nearby quantum point contact as
charge detector. Ground state stability diagrams demonstrate control in the
regime of few electrons charging the TQD. An electrostatic model is developed
to determine the ground state charge configurations of the TQD. Numerical
calculations are compared with experimental results. In addition, the tunneling
conductance through all three quantum dots in series is studied. Quantum
cellular automata processes are identified, which are where charge
reconfiguration between two dots occurs in response to the addition of an
electron in the third dot.Comment: 12 pages, 9 figure
Frictional Drag Between Coupled 2D Hole Gases in GaAs/AlGaAs Heterostructures
We report on the first measurements of the drag effect between coupled
2D-hole gases. We investigate the coupling by changing the carrier densities in
the quantum wells, the widths of the barriers between the gases and the
perpendicular magnetic field. From the data we are able to attribute the
frictional drag to phonon coupling, because the non-parabolicity allows to tune
the Fermi wavevector and the Fermi velocity separately and, thereby, to
distinguish between phonon- and plasmon-dominated coupling.Comment: 10 pages, 5 figure
Evidence of breakdown of the spin symmetry in diluted 2D electron gases
Recent claims of an experimental demonstration of spontaneous spin
polarisation in dilute electron gases \cite{young99} revived long standing
theoretical discussions \cite{ceper99,bloch}. In two dimensions, the
stabilisation of a ferromagnetic fluid might be hindered by the occurrence of
the metal-insulator transition at low densities \cite{abra79}. To circumvent
localisation in the two-dimensional electron gas (2DEG) we investigated the low
populated second electron subband, where the disorder potential is mainly
screened by the high density of the first subband. This letter reports on the
breakdown of the spin symmetry in a 2DEG, revealed by the abrupt enhancement of
the exchange and correlation terms of the Coulomb interaction, as determined
from the energies of the collective charge and spin excitations. Inelastic
light scattering experiments and calculations within the time-dependent local
spin-density approximation give strong evidence for the existence of a
ferromagnetic ground state in the diluted regime.Comment: 4 pages, 4 figures, Revte
Direct control of the tunnel splitting in a one-electron double quantum dot
Quasi-static transport measurements are employed on a laterally defined
tunnel-coupled double quantum dot. A nearby quantum point contact allows us to
track the charge as added to the device. If charged with only up to one
electron, the low-energy spectrum of the double quantum dot is characterized by
its quantum mechanical interdot tunnel splitting. We directly measure its
magnitude by utilizing particular anticrossing features in the stability
diagram at finite source-drain bias. By modification of gate voltages defining
the confinement potential as well as by variation of a perpendicular magnetic
field we demonstrate the tunability of the coherent tunnel coupling.Comment: High resolution pdf file available at
http://www2.nano.physik.uni-muenchen.de/~huettel/research/anticrossing.pd
Determination of MSSM Parameters from LHC and ILC Observables in a Global Fit
We present the results of a realistic global fit of the Lagrangian parameters
of the Minimal Supersymmetric Standard Model assuming universality for the
first and second generation and real parameters. No assumptions on the SUSY
breaking mechanism are made. The fit is performed using the precision of future
mass measurements of superpartners at the LHC and mass and polarized
topological cross-section measurements at the ILC. Higher order radiative
corrections are accounted for whereever possible to date. Results are obtained
for a modified SPS1a MSSM benchmark scenario but they were checked not to
depend critically on this assumption. Exploiting a simulated annealing
algorithm, a stable result is obtained without any a priori assumptions on the
values of the fit parameters. Most of the Lagrangian parameters can be
extracted at the percent level or better if theoretical uncertainties are
neglected. Neither LHC nor ILC measurements alone will be sufficient to obtain
a stable result. The effects of theoretical uncertainties arising from unknown
higher-order corrections and parametric uncertainties are examined
qualitatively. They appear to be relevant and the result motivates further
precision calculations. The obtained parameters at the electroweak scale are
used for a fit of the parameters at high energy scales within the bottom-up
approach. In this way regularities at these scales are explored and the
underlying model can be determined with hardly any theoretical bias. Fits of
high-scale parameters to combined LHC+ILC measurements within the mSUGRA
framework reveal that even tiny distortions in the low-energy mass spectrum
already lead to inacceptable chi^2 values. This does not hold for ``LHC only''
inputs.Comment: 25 pages, 5 figure
Sfermion Pair Production at Colliders
We discuss pair production of stops, sbottoms, staus and tau--sneutrinos at a
collider. We present the formulae for the production cross
sections and perform a detailed numerical analysis within the Minimal
Supersymmetric Standard Model. In particular, we consider sfermion production
near and .Comment: 21 pages, Latex, uses Revtex (included), 8 figures (included as
PS-files
On the two-loop Yukawa corrections to the MSSM Higgs boson masses at large tan(beta)
We complete the effective potential calculation of the two-loop, top/bottom
Yukawa corrections to the Higgs boson masses in the Minimal Supersymmetric
Standard Model, by computing the O(at^2 + at*ab + ab^2) contributions for
arbitrary values of the bottom Yukawa coupling. We also compute the corrections
to the minimization conditions of the effective potential at the same
perturbative order. Our results extend the existing O(at^2) calculation, and
are relevant in regions of the parameter space corresponding to tan(beta) >> 1.
We extend to the Yukawa corrections a convenient renormalization scheme,
previously proposed for the O(ab*as) corrections, that avoids unphysically
large threshold effects associated with the bottom mass and absorbs the bulk of
the corrections into the one-loop expression. For large values of tan(beta),
the new contributions can account for a variation of several GeV in the
lightest Higgs boson mass.Comment: 19 pages, 4 eps figures. Some formulae corrected in the Appendi
- …
