9,739 research outputs found

    Insulation for cryogenic tanks has reduced thickness and weight

    Get PDF
    Dual seal insulation, consisting of an inner layer of sealed-cell Mylar honeycomb core and an outer helium purge channel of fiber glass reinforced phenolic honeycomb core, is used as a thin, lightweight insulation for external surfaces of cryogenic-propellant tanks

    Reply to Comment on "Triviality of the Ground State Structure in Ising Spin Glasses"

    Full text link
    We reply to the comment of Marinari and Parisi [cond-mat/0002457 v2] on our paper [Phys. Rev. Lett. 83, 5126 (1999) and cond-mat/9906323]. We show that the data in the comment are affected by strong finite-size corrections. Therefore the original conclusion of our paper still stands.Comment: Reply to comment cond-mat/0002457 on cond-mat/9906323. Final version with minor change

    Contribution of Chlorophyll Fluorescence to the Apparent Reflectance of Vegetation

    Get PDF
    Current strategies for monitoring the physiologic status of terrestrial vegetation rely on remote sensing reflectance (R) measurements, whi ch provide estimates of relative vegetation vigor based primarily on chlorophyll content. Vegetation chlorophyll fluorescence (CF) offers a non-destructive alternative and a more direct approach for diagnosis of vegetation stress before a significant reduction in chlorophyll content has occurred. Thus, monitoring of vegetation vigor based on CF may allow earlier stress detection and more accurate carbon sequestra tion estimates, than is possible using R data alone. However, the observed apparent vegetation reflectance (Ra) in reality includes contrib utions from both the reflected and fluoresced radiation. The aim of t his study is to determine the relative R and CF fractions contributing to Ra from the vegetation in the red to near-infrared region of the spectrum. The practical objectives of the study are to: 1) evaluate t he relationship between CF and R at the foliar level for corn, soybean, maple; and 2) for corn, determine if the relationship established f or healthy (optimal N) vegetation changes under N defiiency. To obtai n generally applicable results, experimental measurements were conducted on unrelated crop and tree species (maple, soybean and corn), unde r controlled conditions and a gradient of inorganic N fertilization l evels. Optical R spectra and actively induced CF emissions were obtained on the same foliar samples, in conjunction with measurements of p hotosynthetic function, pigment levels, and C and N content. The comm on spectral trends or similarities were examined. On average, 10-20% of apparent R at 685 nm was actually due to CF. The spectral trends in steady and maximum F varied significantly, with Fs (especially red) showing higher ability for species and treatment separation. The relative contribution of ChF to R varied significantly among species, with maple emitting much higher F amounts, as compared to corn and soybea n. Fs individual red and far-red bands and their ratio exhibited consistent species separations. For corn, the relative CF fraction increased in concert with the nutrient stress levels from 7% for severely nutrient deficient plants. F685s provide d optimal treatment separation. This study confirms the trends in F68 5sE740s associated with N deficiency and vegetation stress, established usmg single narrow band excitation

    Mean Field Theory of Collective Transport with Phase Slips

    Get PDF
    The driven transport of plastic systems in various disordered backgrounds is studied within mean field theory. Plasticity is modeled using non-convex interparticle potentials that allow for phase slips. This theory most naturally describes sliding charge density waves; other applications include flow of colloidal particles or driven magnetic flux vortices in disordered backgrounds. The phase diagrams exhibit generic phases and phase boundaries, though the shapes of the phase boundaries depend on the shape of the disorder potential. The phases are distinguished by their velocity and coherence: the moving phase generically has finite coherence, while pinned states can be coherent or incoherent. The coherent and incoherent static phases can coexist in parameter space, in contrast with previous results for exactly sinusoidal pinning potentials. Transitions between the moving and static states can also be hysteretic. The depinning transition from the static to sliding states can be determined analytically, while the repinning transition from the moving to the pinned phases is computed by direct simulation.Comment: 30 pages, 29 figure

    Breakdown of Simple Scaling in Abelian Sandpile Models in One Dimension

    Get PDF
    We study the abelian sandpile model on decorated one dimensional chains. We determine the structure and the asymptotic form of distribution of avalanche-sizes in these models, and show that these differ qualitatively from the behavior on a simple linear chain. We find that the probability distribution of the total number of topplings ss on a finite system of size LL is not described by a simple finite size scaling form, but by a linear combination of two simple scaling forms ProbL(s)=1/Lf1(s/L)+1/L2f2(s/L2)Prob_L(s) = 1/L f_1(s/L) + 1/L^2 f_2(s/L^2), for large LL, where f1f_1 and f2f_2 are some scaling functions of one argument.Comment: 10 pages, revtex, figures include

    Boundary effects in a random neighbor model of earthquakes

    Full text link
    We introduce spatial inhomogeneities (boundaries) in a random neighbor version of the Olami, Feder and Christensen model [Phys. Rev. Lett. 68, 1244 (1992)] and study the distributions of avalanches starting both from the bulk and from the boundaries of the system. Because of their clear geophysical interpretation, two different boundary conditions have been considered (named free and open, respectively). In both cases the bulk distribution is described by the exponent τ3/2\tau \simeq {3/2}. Boundary distributions are instead characterized by two different exponents τ3/2\tau ' \simeq {3/2} and τ7/4\tau ' \simeq {7/4}, for free and open boundary conditions, respectively. These exponents indicate that the mean-field behavior of this model is correctly described by a recently proposed inhomogeneous form of critical branching process.Comment: 6 pages, 2 figures ; to appear on PR

    Magnetic hysteresis in the Cu-Al-Mn intermetallic alloy: experiments and modeling

    Get PDF
    We study isothermal magnetization processes in the Cu-Al-Mn intermetallic alloy. Hysteresis is observed at temperatures below the spin-freezing of the system. The characteristics of the hysteresis cycles as a function of temperature and Mn content (magnetic element) are obtained. At low temperature (5 K) a change from smooth to sharp cycles is observed with increasing Mn content, which is related to the decrease of configurational disorder. We also study a zero-temperature site-diluted Ising model, suitable for the description of this Cu-Al-Mn system. The model reproduces the main features of the hysteresis loops observed experimentally. It exhibits a disorder-induced critical line separating a disordered phase from an incipient ferromagnetic ground-state. The comparison between the model and the experiments allows to conclude that the observed change in the experimental hysteresis loops can be understood within the framework of the theory of disorder-induced criticality in fluctuationless first-order phase transitions.Comment: 30 pages, 15 eps figures, 2 tables. To appear Phys. Rev. B 59 (June 1999
    corecore