749 research outputs found

    New mutations in flagellar motors identified by whole genome sequencing in Chlamydomonas

    Get PDF
    BACKGROUND: The building of a cilium or flagellum requires molecular motors and associated proteins that allow the relocation of proteins from the cell body to the distal end and the return of proteins to the cell body in a process termed intraflagellar transport (IFT). IFT trains are carried out by kinesin and back to the cell body by dynein. METHODS: We used whole genome sequencing to identify the causative mutations for two temperature-sensitive flagellar assembly mutants in Chlamydomonas and validated the changes using reversion analysis. We examined the effect of these mutations on the localization of IFT81, an IFT complex B protein, the cytoplasmic dynein heavy chain (DHC1b), and the dynein light intermediate chain (D1bLIC). RESULTS: The strains, fla18 and fla24, have mutations in kinesin-2 and cytoplasmic dynein, respectively. The fla18 mutation alters the same glutamic acid (E(24)G) mutated in the fla10-14 allele (E(24)K). The fla18 strain loses flagella at 32?C more rapidly than the E(24)K allele but less rapidly than the fla10-1 allele. The fla18 mutant loses its flagella by detachment rather than by shortening. The fla24 mutation falls in cytoplasmic dynein and changes a completely conserved amino acid (L(3243)P) in an alpha helix in the AAA5 domain. The fla24 mutant loses its flagella by shortening within 6 hours at 32?C. DHC1b protein is reduced by 18-fold and D1bLIC is reduced by 16-fold at 21?C compared to wild-type cells. We identified two pseudorevertants (L(3243)S and L(3243)R), which remain flagellated at 32?C. Although fla24 cells assemble full-length flagella at 21?C, IFT81 protein localization is dramatically altered. Instead of localizing at the basal body and along the flagella, IFT81 is concentrated at the proximal end of the flagella. The pseudorevertants show wild-type IFT81 localization at 21?C, but proximal end localization of IFT81 at 32?C. CONCLUSIONS: The change in the AAA5 domain of the cytoplasmic dynein in fla24 may block the recycling of IFT trains after retrograde transport. It is clear that different alleles in the flagellar motors reveal different functions and roles. Multiple alleles will be important for understanding structure-function relationships

    Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory

    Full text link
    A double-peaked structure was observed in the {\it in-situ} Brillouin Light Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for values of an external magnetic field HH, applied along the hard in plane direction, lower than a critical value Hc≃0.9H_c\simeq 0.9 kOe. This experimental finding is theoretically interpreted in terms of a model which assumes a non-homogeneous magnetic ground state characterized by the presence of perperpendicular up/down stripe domains. For such a ground state, two spin-wave modes, namely an acoustic and an optic mode, can exist. Upon increasing the field the magnetization tilts in the film plane, and for H≥HcH \ge H_{c} the ground state is homogeneous, thus allowing the existence of just a single spin-wave mode. The frequencies of the two spin-wave modes were calculated and successfully compared with the experimental data. The field dependence of the intensities of the corresponding two peaks that are present in the BLS spectra was also estimated, providing further support to the above-mentioned interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical Review

    Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers

    Get PDF
    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments. (Chemical Equation Presented)

    Absence of stable collinear configurations in Ni(001)ultrathin films: canted domain structure as ground state

    Full text link
    Brillouin light scattering (BLS) measurements were performed for (17-120) Angstrom thick Cu/Ni/Cu/Si(001) films. A monotonic dependence of the frequency of the uniform mode on an in-plane magnetic field H was observed both on increasing and on decreasing H in the range (2-14) kOe, suggesting the absence of a metastable collinear perpendicular ground state. Further investigation by magneto-optical vector magnetometry (MOKE-VM) in an unconventional canted-field geometry provided evidence for a domain structure where the magnetization is canted with respect to the perpendicular to the film. Spin wave calculations confirm the absence of stable collinear configurations.Comment: 6 pages, 3 figures (text, appendix and 1 figure added

    Diffusion and reactivity in ultraviscous aerosol and the correlation with particle viscosity

    Get PDF
    Direct comparison of diffusion coefficients and viscosities of ternary component single aerosol particles levitated using optical tweezers.</p

    αADα Hybrids of Cryptococcus neoformans: Evidence of Same-Sex Mating in Nature and Hybrid Fitness

    Get PDF
    Cryptococcus neoformans is a ubiquitous human fungal pathogen that causes meningoencephalitis in predominantly immunocompromised hosts. The fungus is typically haploid, and sexual reproduction involves two individuals with opposite mating types/sexes, α and a. However, the overwhelming predominance of mating type (MAT) α over a in C. neoformans populations limits α–a mating in nature. Recently it was discovered that C. neoformans can undergo same-sex mating under laboratory conditions, especially between α isolates. Whether same-sex mating occurs in nature and contributes to the current population structure was unknown. In this study, natural αADα hybrids that arose by fusion between two α cells of different serotypes (A and D) were identified and characterized, providing definitive evidence that same-sex mating occurs naturally. A novel truncated allele of the mating-type-specific cell identity determinant SXI1α was also identified as a genetic factor likely involved in this process. In addition, laboratory-constructed αADα strains exhibited hybrid vigor both in vitro and in vivo, providing a plausible explanation for their relative abundance in nature despite the fact that AD hybrids are inefficient in meiosis/sporulation and are trapped in the diploid state. These findings provide insights on the origins, genetic mechanisms, and fitness impact of unisexual hybridization in the Cryptococcus population

    In-beam internal conversion electron spectroscopy with the SPICE detector

    Full text link
    The SPectrometer for Internal Conversion Electrons (SPICE) has been commissioned for use in conjunction with the TIGRESS γ\gamma-ray spectrometer at TRIUMF's ISAC-II facility. SPICE features a permanent rare-earth magnetic lens to collect and direct internal conversion electrons emitted from nuclear reactions to a thick, highly segmented, lithium-drifted silicon detector. This arrangement, combined with TIGRESS, enables in-beam γ\gamma-ray and internal conversion electron spectroscopy to be performed with stable and radioactive ion beams. Technical aspects of the device, capabilities, and initial performance are presented
    • …
    corecore