386 research outputs found
Deux cas d'infection humaine accidentelle par Plasmodium cynomolgi bastianellii : étude clinique et sérologique
The Dielmo project : a longitudinal study of natural malaria infection and the mechanisms of protective immunity in a community living in a holoendemic area of Senegal
Intestinal parasitic infections in schoolchildren in different settings of Côte d'Ivoire : effect of diagnostic approach and implications for control
BACKGROUND: Social-ecological systems govern parasitic infections in humans. Within the frame of assessing the accuracy of a rapid diagnostic test for Schistosoma mansoni in Cote d'Ivoire, three different endemicity settings had to be identified and schoolchildren's intestinal parasitic infection profiles were characterized.
METHODS: In September 2010, a rapid screening was conducted in 11 schools in the Azaguie district, south Cote d'Ivoire. In each school, 25 children were examined for S. mansoni and S. haematobium. Based on predefined schistosome endemicity levels, three settings were selected, where schoolchildren aged 8-12 years were asked to provide three stool and three urine samples for an in-depth appraisal of parasitic infections. Triplicate Kato-Katz thick smears were prepared from each stool sample for S. mansoni and soil-transmitted helminth diagnosis, whereas urine samples were subjected to a filtration method for S. haematobium diagnosis. Additionally, a formol-ether concentration method was employed on one stool sample for the diagnosis of helminths and intestinal protozoa. Multivariable logistic regression models were employed to analyse associations between schoolchildren's parasitic infections, age, sex and study setting.
RESULTS: The prevalences of S. mansoni and S. haematobium infections in the initial screening ranged from nil to 88% and from nil to 56%, respectively. The rapid screening in the three selected areas revealed prevalences of S. mansoni of 16%, 33% and 78%. Based on a more rigorous diagnostic approach, the respective prevalences increased to 92%, 53% and 33%. S. haematobium prevalences were 0.8%, 4% and 65%. Prevalence and intensity of Schistosoma spp., soil-transmitted helminths and intestinal protozoan infections showed setting-specific patterns. Infections with two or more species concurrently were most common in the rural setting (84%), followed by the peri-urban (28.3%) and urban setting (18.2%).
CONCLUSIONS: More sensitive diagnostic tools or rigorous sampling approaches are needed to select endemicity settings with high fidelity. The observed small-scale heterogeneity of helminths and intestinal protozoan infections has important implications for contro
Experience and Challenges from Clinical Trials with Malaria Vaccines in Africa.
Malaria vaccines are considered amongst the most important modalities for potential elimination of malaria disease and transmission. Research and development in this field has been an area of intense effort by many groups over the last few decades. Despite this, there is currently no licensed malaria vaccine. Researchers, clinical trialists and vaccine developers have been working on many approached to make malaria vaccine available.African research institutions have developed and demonstrated a great capacity to undertake clinical trials in accordance to the International Conference on Harmonization-Good Clinical Practice (ICH-GCP) standards in the last decade; particularly in the field of malaria vaccines and anti-malarial drugs. This capacity is a result of networking among African scientists in collaboration with other partners; this has traversed both clinical trials and malaria control programmes as part of the Global Malaria Action Plan (GMAP). GMAP outlined and support global strategies toward the elimination and eradication of malaria in many areas, translating in reduction in public health burden, especially for African children. In the sub-Saharan region the capacity to undertake more clinical trials remains small in comparison to the actual need.However, sustainability of the already developed capacity is essential and crucial for the evaluation of different interventions and diagnostic tools/strategies for other diseases like TB, HIV, neglected tropical diseases and non-communicable diseases. There is urgent need for innovative mechanisms for the sustainability and expansion of the capacity in clinical trials in sub-Saharan Africa as the catalyst for health improvement and maintained
Mefloquine resistant malaria in cameroon and correlation with resistance quinine
Based on the results of in vitro sensitivity of Plasmodium falciparum to chloroquine, quinine and mefloquine, and evaluation of drug consumption conducted in 1987-1988 in four areas in the noth and south-west of Cameron, two opposite situations were encountered in this country. In northern Cameron where mefloquine resistance is prevalent a close correlation was found between the responses of P. falciparum to mefloquine and to quinine, but not between mefloquine and chloroquine. In the south, where chloroquine resistance is highly prevalent, no correlation was found neither between mefloquine and chloroquine nor mefloquine and quinine, but the responses to quinine and chloroquine appear partly correlated. These lead to formulate the hypothesis of a "southern" type of P. falciparum submitted to a high chloroquine drug pressure inducing a secondary cross resistance, whilst a "northern"type submitted to a relatively high and abortive quinine drug pressure inducing a primary quinine resistance and a secondary cross resistance with mefloquine
Pre-Clinical Assessment of Novel Multivalent MSP3 Malaria Vaccine Constructs
BACKGROUND: MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria. METHODS: Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates. RESULTS: All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses. CONCLUSIONS: Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations
Molecular basis of caspase-1 polymerization and its inhibition by a new capping mechanism
Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1[superscript CARD]) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar K[subscript i] on caspase-1[superscript CARD] polymerization in vitro and inflammasome activation in cells. Whereas caspase-1[superscript CARD] uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament
Identification of a conserved region of Plasmodium falciparum MSP3 targeted by biologically active antibodies to improve vaccine design
Merozoite surface protein 3 (MSP3) is a target of antibody-dependent cellular inhibition (ADCI), a protective mechanism against Plasmodium falciparum malaria. From the C-terminal half of the molecule, 6 overlapping peptides were chosen to characterize human immune responses. Each peptide defined at least 1 non-cross-reactive B cell epitope. Distinct patterns of antibody responses, by level and IgG subclass distribution, were observed in inhabitants of a malaria-endemic area. Antibodies affinity purified toward each peptide differed in their functional capacity to mediate parasite killing in ADCI assays: 3 of 6 overlapping peptides had a major inhibitory effect on parasite growth. This result was confirmed by the passive transfer of anti-MSP3 antibodies in vivo in a P. falciparum mouse model. T helper cell epitopes were identified in each peptide. Antigenicity and functional assays identified a 70-amino acid conserved domain of MSP3 as a target of biologically active antibodies to be included in future vaccine constructs based on MSP3
- …
