204 research outputs found

    Differential Calculi on Associative Algebras and Integrable Systems

    Full text link
    After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a "symmetry" of a generalized zero curvature equation and derive Backlund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.Comment: 19 pages, to appear in "Algebraic Structures and Applications", S. Silvestrov et al (eds.), Springer Proceedings in Mathematics & Statistics, 202

    Soliton equations and the zero curvature condition in noncommutative geometry

    Get PDF
    Familiar nonlinear and in particular soliton equations arise as zero curvature conditions for GL(1,R) connections with noncommutative differential calculi. The Burgers equation is formulated in this way and the Cole-Hopf transformation for it attains the interpretation of a transformation of the connection to a pure gauge in this mathematical framework. The KdV, modified KdV equation and the Miura transformation are obtained jointly in a similar setting and a rather straightforward generalization leads to the KP and a modified KP equation. Furthermore, a differential calculus associated with the Boussinesq equation is derived from the KP calculus.Comment: Latex, 10 page

    Dynamical Evolution in Noncommutative Discrete Phase Space and the Derivation of Classical Kinetic Equations

    Full text link
    By considering a lattice model of extended phase space, and using techniques of noncommutative differential geometry, we are led to: (a) the conception of vector fields as generators of motion and transition probability distributions on the lattice; (b) the emergence of the time direction on the basis of the encoding of probabilities in the lattice structure; (c) the general prescription for the observables' evolution in analogy with classical dynamics. We show that, in the limit of a continuous description, these results lead to the time evolution of observables in terms of (the adjoint of) generalized Fokker-Planck equations having: (1) a diffusion coefficient given by the limit of the correlation matrix of the lattice coordinates with respect to the probability distribution associated with the generator of motion; (2) a drift term given by the microscopic average of the dynamical equations in the present context. These results are applied to 1D and 2D problems. Specifically, we derive: (I) The equations of diffusion, Smoluchowski and Fokker-Planck in velocity space, thus indicating the way random walk models are incorporated in the present context; (II) Kramers' equation, by further assuming that, motion is deterministic in coordinate spaceComment: LaTeX2e, 40 pages, 1 Postscript figure, uses package epsfi

    Integrability and chemical potential in the (3+1)-dimensional Skyrme model

    Full text link
    Using a remarkable mapping from the original (3+1)dimensional Skyrme model to the Sine-Gordon model, we construct the first analytic examples of Skyrmions as well as of Skyrmions--anti-Skyrmions bound states within a finite box in 3+1 dimensional flat space-time. An analytic upper bound on the number of these Skyrmions--anti-Skyrmions bound states is derived. We compute the critical isospin chemical potential beyond which these Skyrmions cease to exist. With these tools, we also construct topologically protected time-crystals: time-periodic configurations whose time-dependence is protected by their non-trivial winding number. These are striking realizations of the ideas of Shapere and Wilczek. The critical isospin chemical potential for these time-crystals is determined.Comment: 15 pages; 1 figure; a discussion on the closeness to the topological bound as well as some clarifying comments on the semi-classical quantization have been included. Relevant references have been added. Version accepted for publication on Physics Letters

    Pythagoras' Theorem on a 2D-Lattice from a "Natural" Dirac Operator and Connes' Distance Formula

    Full text link
    One of the key ingredients of A. Connes' noncommutative geometry is a generalized Dirac operator which induces a metric(Connes' distance) on the state space. We generalize such a Dirac operator devised by A. Dimakis et al, whose Connes' distance recovers the linear distance on a 1D lattice, into 2D lattice. This Dirac operator being "naturally" defined has the so-called "local eigenvalue property" and induces Euclidean distance on this 2D lattice. This kind of Dirac operator can be generalized into any higher dimensional lattices.Comment: Latex 11pages, no figure

    Noncommutative Geometry of Finite Groups

    Full text link
    A finite set can be supplied with a group structure which can then be used to select (classes of) differential calculi on it via the notions of left-, right- and bicovariance. A corresponding framework has been developed by Woronowicz, more generally for Hopf algebras including quantum groups. A differential calculus is regarded as the most basic structure needed for the introduction of further geometric notions like linear connections and, moreover, for the formulation of field theories and dynamics on finite sets. Associated with each bicovariant first order differential calculus on a finite group is a braid operator which plays an important role for the construction of distinguished geometric structures. For a covariant calculus, there are notions of invariance for linear connections and tensors. All these concepts are explored for finite groups and illustrated with examples. Some results are formulated more generally for arbitrary associative (Hopf) algebras. In particular, the problem of extension of a connection on a bimodule (over an associative algebra) to tensor products is investigated, leading to the class of `extensible connections'. It is shown that invariance properties of an extensible connection on a bimodule over a Hopf algebra are carried over to the extension. Furthermore, an invariance property of a connection is also shared by a `dual connection' which exists on the dual bimodule (as defined in this work).Comment: 34 pages, Late

    Bi-differential calculi and integrable models

    Full text link
    The existence of an infinite set of conserved currents in completely integrable classical models, including chiral and Toda models as well as the KP and self-dual Yang-Mills equations, is traced back to a simple construction of an infinite chain of closed (respectively, covariantly constant) 1-forms in a (gauged) bi-differential calculus. The latter consists of a differential algebra on which two differential maps act. In a gauged bi-differential calculus these maps are extended to flat covariant derivatives.Comment: 24 pages, 2 figures, uses amssymb.sty and diagrams.sty, substantial extensions of examples (relative to first version

    Non-commutative Geometry and Kinetic Theory of Open Systems

    Get PDF
    The basic mathematical assumptions for autonomous linear kinetic equations for a classical system are formulated, leading to the conclusion that if they are differential equations on its phase space MM, they are at most of the 2nd order. For open systems interacting with a bath at canonical equilibrium they have a particular form of an equation of a generalized Fokker-Planck type. We show that it is possible to obtain them as Liouville equations of Hamiltonian dynamics on MM with a particular non-commutative differential structure, provided certain geometric in character, conditions are fulfilled. To this end, symplectic geometry on MM is developped in this context, and an outline of the required tensor analysis and differential geometry is given. Certain questions for the possible mathematical interpretation of this structure are also discussed.Comment: 22 pages, LaTe

    Abelian Toda field theories on the noncommutative plane

    Full text link
    Generalizations of GL(n) abelian Toda and GL~(n)\widetilde{GL}(n) abelian affine Toda field theories to the noncommutative plane are constructed. Our proposal relies on the noncommutative extension of a zero-curvature condition satisfied by algebra-valued gauge potentials dependent on the fields. This condition can be expressed as noncommutative Leznov-Saveliev equations which make possible to define the noncommutative generalizations as systems of second order differential equations, with an infinite chain of conserved currents. The actions corresponding to these field theories are also provided. The special cases of GL(2) Liouville and GL~(2)\widetilde{GL}(2) sinh/sine-Gordon are explicitly studied. It is also shown that from the noncommutative (anti-)self-dual Yang-Mills equations in four dimensions it is possible to obtain by dimensional reduction the equations of motion of the two-dimensional models constructed. This fact supports the validity of the noncommutative version of the Ward conjecture. The relation of our proposal to previous versions of some specific Toda field theories reported in the literature is presented as well.Comment: v3 30 pages, changes in the text, new sections included and references adde
    • …
    corecore