Abstract

The existence of an infinite set of conserved currents in completely integrable classical models, including chiral and Toda models as well as the KP and self-dual Yang-Mills equations, is traced back to a simple construction of an infinite chain of closed (respectively, covariantly constant) 1-forms in a (gauged) bi-differential calculus. The latter consists of a differential algebra on which two differential maps act. In a gauged bi-differential calculus these maps are extended to flat covariant derivatives.Comment: 24 pages, 2 figures, uses amssymb.sty and diagrams.sty, substantial extensions of examples (relative to first version

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019