397 research outputs found
Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes
Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires
Deltaic deposits at Aeolis Dorsa: Sedimentary evidence for a standing body of water on the northern plains of Mars
A fundamental long-standing question regarding Mars history is whether the flat and low-lying northern plains ever hosted an ocean. The best opportunity to solve this problem is provided by stratigraphic observations of sedimentary deposits onlapping the crustal dichotomy. Here, we use high-resolution imagery and topography to analyze a branching network of inverted channel and channel lobe deposits in the Aeolis Dorsa region, just north of the dichotomy boundary. Observations of stacked, cross-cutting channel bodies and stratal geometries indicate that these landforms represent exhumed distributary channel deposits. Observations of depositional trunk feeder channel bodies, a lack of evidence for past topographic confinement, channel avulsions at similar elevations, and the presence of a strong break in dip slope between topset and foreset beds suggest that this distributary system was most likely a delta, rather than an alluvial fan or submarine fan. Sediment transport calculations using both measured and derived channel geometries indicate a minimum delta deposition time on the order of 400 years. The location of this delta within a thick and widespread clastic wedge abutting the crustal dichotomy boundary, unconfined by any observable craters, suggests a standing body of water potentially 105 km2 in extent or greater and is spatially consistent with hypotheses for a northern ocean
Force chains as the link between particle and bulk friction angles in granular material
From sediment transport in rivers to landslides, predictions of granular motion rely on a Mohr-Coulomb failure criterion parameterized by a friction angle. Measured friction angles are generally large for single grains, smaller for large numbers of grains, and no theory exists for intermediate numbers of grains. We propose that a continuum of friction angles exists between single-grain and bulk friction angles due to grain-to-grain force chains. Physical experiments, probabilistic modeling, and discrete element modeling demonstrate that friction angles decrease by up to 15° as the number of potentially mobile grains increases from 1 to ~20. Decreased stability occurs as longer force chains more effectively dislodge downslope “keystone” grains, implying that bulk friction angles are set by the statistics of single-grain friction angles. Both angles are distinct from and generally larger than grain contact-point friction, with implications for a variety of sediment transport processes involving small clusters of grains
Fast photon detection for the COMPASS RICH detector
The COMPASS experiment at the SPS accelerator at CERN uses a large scale Ring
Imaging CHerenkov detector (RICH) to identify pions, kaons and protons in a
wide momentum range. For the data taking in 2006, the COMPASS RICH has been
upgraded in the central photon detection area (25% of the surface) with a new
technology to detect Cherenkov photons at very high count rates of several 10^6
per second and channel and a new dead-time free read-out system, which allows
trigger rates up to 100 kHz. The Cherenkov photons are detected by an array of
576 visible and ultra-violet sensitive multi-anode photomultipliers with 16
channels each. The upgraded detector showed an excellent performance during the
2006 data taking.Comment: Proceeding of the IPRD06 conference (Siena, Okt. 06
The Fast Read-out System for the MAPMTs of COMPASS RICH-1
A fast readout system for the upgrade of the COMPASS RICH detector has been
developed and successfully used for data taking in 2006 and 2007. The new
readout system for the multi-anode PMTs in the central part of the photon
detector of the RICH is based on the high-sensitivity MAD4
preamplifier-discriminator and the dead-time free F1-TDC chip characterized by
high-resolution. The readout electronics has been designed taking into account
the high photon flux in the central part of the detector and the requirement to
run at high trigger rates of up to 100 kHz with negligible dead-time. The
system is designed as a very compact setup and is mounted directly behind the
multi-anode photomultipliers. The data are digitized on the frontend boards and
transferred via optical links to the readout system. The read-out electronics
system is described in detail together with its measured performances.Comment: Proceeding of RICH2007 Conference, Trieste, Oct. 2007. v2: minor
change
Fast Photon Detection for Particle Identification with COMPASS RICH-1
Particle identification at high rates is an important challenge for many
current and future high-energy physics experiments. The upgrade of the COMPASS
RICH-1 detector requires a new technique for Cherenkov photon detection at
count rates of several per channel in the central detector region, and a
read-out system allowing for trigger rates of up to 100 kHz. To cope with these
requirements, the photon detectors in the central region have been replaced
with the detection system described in this paper. In the peripheral regions,
the existing multi-wire proportional chambers with CsI photocathode are now
read out via a new system employing APV pre-amplifiers and flash ADC chips. The
new detection system consists of multi-anode photomultiplier tubes (MAPMT) and
fast read-out electronics based on the MAD4 discriminator and the F1-TDC chip.
The RICH-1 is in operation in its upgraded version for the 2006 CERN SPS run.
We present the photon detection design, constructive aspects and the first
Cherenkov light in the detector.Comment: Proceedings of the Imaging 2006 conference, Stockholm, Sweden, 27-30
June 2006, 5 pages, 6 figures, to appear in NIM A; corrected typo in caption
of Fig.
Recommended from our members
A Network of Epigenetic Regulators Guide Developmental Hematopoiesis In Vivo
The initiation of cellular programs is orchestrated by key transcription factors and chromatin regulators that activate or inhibit target gene expression. To generate a compendium of chromatin factors that establish the epigenetic code during developmental hematopoiesis, a large-scale reverse genetic screen was conducted targeting orthologs of 425 human chromatin factors in zebrafish. A set of chromatin regulators was identified that target different stages of primitive and definitive blood formation, including factors not previously implicated in hematopoiesis. We identified 15 factors that regulate development of primitive erythroid progenitors and 29 factors that regulate development of definitive stem and progenitor cells. These chromatin factors are associated with SWI/SNF and ISWI chromatin remodeling, SET1 methyltransferase, CBP/P300/HBO1/NuA4 acetyltransferase, HDAC/NuRD deacetylase, and Polycomb repressive complexes. Our work provides a comprehensive view of how specific chromatin factors and their associated complexes play a major role in the establishment of hematopoietic cells in vivo
Testing fluvial erosion models using the transient response of bedrock rivers to tectonic forcing in the Apennines, Italy
The transient response of bedrock rivers to a drop in base level can be used to
discriminate between competing fluvial erosion models. However, some recent studies of
bedrock erosion conclude that transient river long profiles can be approximately
characterized by a transport‐limited erosion model, while other authors suggest that a
detachment‐limited model best explains their field data. The difference is thought to be
due to the relative volume of sediment being fluxed through the fluvial system. Using a
pragmatic approach, we address this debate by testing the ability of end‐member fluvial
erosion models to reproduce the well‐documented evolution of three catchments in the
central Apennines (Italy) which have been perturbed to various extents by an
independently constrained increase in relative uplift rate. The transport‐limited model is
unable to account for the catchments’response to the increase in uplift rate, consistent with
the observed low rates of sediment supply to the channels. Instead, a detachment‐limited
model with a threshold corresponding to the field‐derived median grain size of the
sediment plus a slope‐dependent channel width satisfactorily reproduces the overall
convex long profiles along the studied rivers. Importantly, we find that the prefactor in the
hydraulic scaling relationship is uplift dependent, leading to landscapes responding faster
the higher the uplift rate, consistent with field observations. We conclude that a slope‐
dependent channel width and an entrainment/erosion threshold are necessary ingredients
when modeling landscape evolution or mapping the distribution of fluvial erosion rates in
areas where the rate of sediment supply to channels is low
The COMPASS Experiment at CERN
The COMPASS experiment makes use of the CERN SPS high-intensitymuon and
hadron beams for the investigation of the nucleon spin structure and the
spectroscopy of hadrons. One or more outgoing particles are detected in
coincidence with the incoming muon or hadron. A large polarized target inside a
superconducting solenoid is used for the measurements with the muon beam.
Outgoing particles are detected by a two-stage, large angle and large momentum
range spectrometer. The setup is built using several types of tracking
detectors, according to the expected incident rate, required space resolution
and the solid angle to be covered. Particle identification is achieved using a
RICH counter and both hadron and electromagnetic calorimeters. The setup has
been successfully operated from 2002 onwards using a muon beam. Data with a
hadron beam were also collected in 2004. This article describes the main
features and performances of the spectrometer in 2004; a short summary of the
2006 upgrade is also given.Comment: 84 papes, 74 figure
Dry sediment loading of headwater channels fuels post-wildfire debris flows in bedrock landscapes
Landscapes following wildfire commonly have significant increases in sediment yield and debris flows that pose major hazards and are difficult to predict. Ultimately, post-wildfire sediment yield is governed by processes that deliver sediment from hillslopes to channels, but it is commonly unclear the degree to which hillslope sediment delivery is driven by wet versus dry processes, which limits the ability to predict debris-flow occurrence and response to climate change. Here we use repeat airborne lidar topography to track sediment movement following the 2009 CE Station Fire in southern California, USA, and show that post-wildfire debris flows initiated in channels filled by dry sediment transport, rather than on hillsides during rainfall as typically assumed. We found widespread patterns of 1–3 m of dry sediment loading in headwater channels immediately following wildfire and before rainfall, followed by sediment excavation during subsequent storms. In catchments where post-wildfire dry sediment loading was absent, possibly due to differences in lithology, channel scour during storms did not occur. Our results support a fire-flood model in bedrock landscapes whereby debris-flow occurrence depends on dry sediment loading rather than hillslope-runoff erosion, shallow landslides, or burn severity, indicating that sediment supply can limit debris-flow occurrence in bedrock landscapes with more-frequent fires
- …
