356 research outputs found
Spin wave emission by spin-orbit torque antennas
We study the generation of propagating spin waves in Ta/CoFeB waveguides by
spin-orbit torque antennas and compare them to conventional inductive antennas.
The spin-orbit torque was generated by a transverse microwave current across
the magnetic waveguide. The detected spin wave signals for an in-plane
magnetization across the waveguide (Damon-Eshbach configuration) exhibited the
expected phase rotation and amplitude decay upon propagation when the current
spreading was taken into account. Wavevectors up to about 6 rad/m could be
excited by the spin-orbit torque antennas despite the current spreading,
presumably due to the non-uniformity of the microwave current. The relative
magnitude of generated anti-damping spin-Hall and Oersted fields was calculated
within an analytic model and it was found that they contribute approximately
equally to the total effective field generated by the spin-orbit torque
antenna. Due to the ellipticity of the precession in the ultrathin waveguide
and the different orientation of the anti-damping spin-Hall and Oersted fields,
the torque was however still dominated by the Oersted field. The prospects for
obtaining a pure spin-orbit torque response are discussed, as are the energy
efficiency and the scaling properties of spin-orbit torque antennas.Comment: 20 pages, 5 figure
Dynamical influence of vortex-antivortex pairs in magnetic vortex oscillators
We study the magnetization dynamics in a nanocontact magnetic vortex
oscillators as function of temperature. Low temperature experiments reveal that
the dynamics at low and high currents differ qualitatively. At low currents, we
excite a temperature independent standard oscillation mode, consisting in the
gyrotropic motion of a free layer vortex about the nanocontact. Above a
critical current, a sudden jump of the frequency is observed, concomitant with
a substantial increase of the frequency versus current slope factor. Using
micromagnetic simulation and analytical modeling, we associate this new regime
to the creation of a vortex-antivortex pair in the pinned layer of the spin
valve. The vortex-antivortex distance depends on the Oersted field which favors
a separation, and on the exchange bias field, which favors pair merging. The
pair in the pinned layer provides an additional spin torque altering the
dynamics of the free layer vortex, which can be quantitatively accounted for by
an analytical model
Auto-oscillation threshold, narrow spectral lines, and line jitter in spin-torque oscillators based on MgO magnetic tunnel junctions
We demonstrate spin torque induced auto-oscillation in MgO-based magnetic
tunnel junctions. At the generation threshold, we observe a strong line
narrowing down to 6 MHz at 300K and a dramatic increase in oscillator power,
yielding spectrally pure oscillations free of flicker noise. Setting the
synthetic antiferromagnet into autooscillation requires the same current
polarity as the one needed to switch the free layer magnetization. The induced
auto-oscillations are observed even at zero applied field, which is believed to
be the acoustic mode of the synthetic antiferromagnet. While the phase
coherence of the auto-oscillation is of the order of microseconds, the power
autocorrelation time is of the order of milliseconds and can be strongly
influenced by the free layer dynamics
Current-driven vortex oscillations in metallic nanocontacts
We present experimental evidence of sub-GHz spin-transfer oscillations in
metallic nano-contacts that are due to the translational motion of a magnetic
vortex. The vortex is shown to execute large-amplitude orbital motion outside
the contact region. Good agreement with analytical theory and micromagnetics
simulations is found.Comment: 4 pages, 3 figure
Current-driven microwave oscillations in current perpendicular-to-plane spin-valve nanopillars
We study the current and temperature dependences of the microwave voltage
emission of spin-valve nanopillars subjected to an in-plane magnetic field and
a perpendicular-to-plane current. Despite the complex multilayer geometry,
clear microwave emission is shown to be possible and spectral lines as narrow
as 3.8 MHz (at 150 K) are observed.Comment: To appear in Applied Physics Letter
Agility of vortex-based nanocontact spin torque oscillators
We study the agility of current-tunable oscillators based on a magnetic
vortex orbiting around a point contact in spin-valves. Theory predicts
frequency-tuning by currents occurs at constant orbital radius, so an
exceptional agility is anticipated. To test this, we have inserted an
oscillator in a microwave interferometer to apply abrupt current variations
while time resolving its emission. Using frequency shift keying, we show that
the oscillator can switch between two stabilized frequencies differing by 25%
in less than ten periods. With a wide frequency tunability and a good agility,
such oscillators possess desirable figures of merit for modulation-based rf
applications.Comment: 3 pages, 3 figure
Frequency shift keying in vortex-based spin torque oscillators
Vortex-based spin-torque oscillators can be made from extended spin valves
connected to an electrical nanocontact. We study the implementation of
frequency shift keying modulation in these oscillators. Upon a square
modulation of the current in the 10 MHz range, the vortex frequency follows the
current command, with easy identification of the two swapping frequencies in
the spectral measurements. The frequency distribution of the output power can
be accounted for by convolution transformations of the dc current vortex
waveform, and the current modulation. Modeling indicates that the frequency
transitions are phase coherent and last less than 25 ns. Complementing the
multi-octave tunability and first-class agility, the capability of frequency
shift keying modulation is an additional milestone for the implementation of
vortex-based oscillators in RF circuit.Comment: 6 pages, 5 figure
- …
