65 research outputs found

    On preconditioning electromagnetic integral equations in the high frequency regime via helmholtz operators and quasi-helmholtz projectors

    Get PDF
    Fast and accurate resolution of electromagnetic problems via the boundary element method (BEM) is oftentimes challenged by conditioning issues occurring in three distinct regimes: (i) when the frequency decreases and the discretization density remains constant, (ii) when the frequency is kept constant while the discretization is refined and (iii) when the frequency increases along with the discretization density. While satisfactory remedies to the problems arising in regimes (i) and (ii), respectively based on Helmholtz decompositions and Calderon-like techniques have been presented, the last regime is still challenging. In fact, this last regime is plagued by both spurious resonances and ill-conditioning, the former can be tackled via combined field strategies and is not the topic of this work. In this contribution new symmetric scalar and vectorial electric type formulations that remain well-conditioned in all of the aforementioned regimes and that do not require barycentric discretization of the dense electromagnetic potential operators are presented along with a spherical harmonics analysis illustrating their key properties

    On the Fast Direct Solution of a Preconditioned Electromagnetic Integral Equation

    Get PDF
    This work presents a fast direct solver strategy for electromagnetic integral equations in the high-frequency regime. The new scheme relies on a suitably preconditioned combined field formulation and results in a single skeleton form plus identity equation. This is obtained after a regularization of the elliptic spectrum through the extraction of a suitably chosen equivalent circulant problem. The inverse of the system matrix is then obtained by leveraging the Woodbury matrix identity, the low-rank representation of the extracted part of the operator, and fast circulant algebra yielding a scheme with a favorable complexity and suitable for the solution of multiple right-hand sides. Theoretical considerations are accompanied by numerical results both of which are confirming and showing the practical relevance of the newly developed scheme

    An (MI)LP-based Primal Heuristic for 3-Architecture Connected Facility Location in Urban Access Network Design

    Full text link
    We investigate the 3-architecture Connected Facility Location Problem arising in the design of urban telecommunication access networks. We propose an original optimization model for the problem that includes additional variables and constraints to take into account wireless signal coverage. Since the problem can prove challenging even for modern state-of-the art optimization solvers, we propose to solve it by an original primal heuristic which combines a probabilistic fixing procedure, guided by peculiar Linear Programming relaxations, with an exact MIP heuristic, based on a very large neighborhood search. Computational experiments on a set of realistic instances show that our heuristic can find solutions associated with much lower optimality gaps than a state-of-the-art solver.Comment: This is the authors' final version of the paper published in: Squillero G., Burelli P. (eds), EvoApplications 2016: Applications of Evolutionary Computation, LNCS 9597, pp. 283-298, 2016. DOI: 10.1007/978-3-319-31204-0_19. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-31204-0_1

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1

    New Phytologist / The betrayed thief the extraordinary strategy of Aristolochia rotunda to deceive its pollinators

    Get PDF
    Pollination of several angiosperms is based on deceit. In such systems, the flowers advertise a reward that ultimately is not provided. We report on a previously unknown pollination/mimicry system discovered in deceptive Aristolochia rotunda (Aristolochiaceae). Pollinators were collected in the natural habitat and identified. Flower scent and the volatiles of insects (models) potentially mimicked were analyzed by chemical analytical techniques. Electrophysiological and behavioral tests on the pollinators identified the components that mediate the plantpollinator interaction and revealed the model of the mimicry system. The main pollinators of A. rotunda were female Chloropidae. They are food thieves that feed on secretions of true bugs (Miridae) while these are eaten by arthropod predators. Freshly killed mirids and Aristolochia flowers released the same scent components that chloropids use to find their food sources. Aristolochia exploits these components to deceive their chloropid pollinators. Aristolochia and other trap flowers were believed to lure saprophilous flies and mimic brood sites of pollinators. We demonstrate for A. rotunda, and hypothesize for other deceptive angiosperms, the evolution of a different, kleptomyiophilous pollination strategy. It involves scent mimicry and the exploitation of kleptoparasitic flies as pollinators. Our findings suggest a reconsideration of plants assumed to show sapromyiophilous pollination.(VLID)221519
    • 

    corecore