16 research outputs found

    Saline Lake Charophytes and Their Geological Significance

    No full text
    Charophytes are found in some phemeral saline lakes in Australia. Healthy green charophytes, bearing oogonia, are frequently observed at salinities c.1-2 times that of seawater. The lakes containing these charophytes have various hydrological settings but are all influenced by inputs of continental groundwater of seasonally varying salinity. Different evaporite minerals are deposited depending upon local desiccation-evaporation balances. In coastal lagoons adjacent to the Coorong, charophytes are found associated with calcite, aragonite and protodolomite while in the continental lakes around N. Spencer Gulf the observed associations are with gypsum and halite. Lake deposits containing charophyte oogonia and discoidal gypsum provide a recent analog for some ancient evaporite units. -from Author

    The influence of reduced flow during a drought on patterns of variation in macroinvertebrate assemblages across a spatial hierarchy in two lowland rivers

    Full text link
    1. With the aim of determining whether patterns of variation in macroinvertebrate assemblage composition across the hierarchy of spatial units in two lowland rivers changed during a supra-seasonal drought (1997&ndash;2000), patterns during a reduced flow season (1999&ndash;2000) were compared with those during two preceding higher flow seasons (1997&ndash;98 and 1998&ndash;99) using samples from the Glenelg and Wimmera Rivers, two lowland regulated rivers in western Victoria, Australia.2. We hypothesised that (i) differences between reaches would increase during the reduced flow season owing to decreased hydrological connectivity, (ii) differences between the habitats would decrease because the cessation of flow in run habitats should cause them to become more similar to pool habitats and (iii) differences between microhabitats would also decrease because of reduced scour of inorganic substrata and large woody debris.3. During each season, macroinvertebrates were sampled from three microhabitats (sand/silt substratum, large woody debris and macrophytes) that were hierarchically nested within a run or pool habitat and within one of three reaches within each river. A range of physico-chemical variables was also sampled.4. Analysis of similarity showed that assemblage composition in both rivers during the higher flow seasons differed more among microhabitats than other spatial units. However, during the reduced flow season, assemblage composition in the Wimmera River differed most among reaches. This change in pattern was associated with the combined effects of decreased flow and longitudinal increases in salinity. In contrast, the fauna of the Glenelg River appeared to be resistant to the effects of the reduced flow season, owing to limited decline in water quality despite lower river discharge.5. As salinisation and poor water quality in the Wimmera River result from human activities in the catchment, these results support the idea that human impacts on rivers can change macroinvertebrate scaling patterns and exacerbate the effects of drought beyond the tolerance of many riverine macroinvertebrates.<br /

    Multi-scale assessment of macroinvertebrate richness and composition in Mediterranean-climate rivers

    No full text
    1. Similar constraints in distant, but climatically comparable, regions may be expected to yield biotic assemblages with similar attributes. Environmental factors that constrain communities at smaller scales, however, may be different between climatically similar regions. Thus, patterns observed at large scales may differ from those detected at small scales, and international comparisons should be focussed at multiple scales. 2. Mediterranean-climate regions (MCRs) are characterized by remarkable seasonal variability in precipitation and temperature. Accordingly, rivers in these regions have seasonal and predictable floods and droughts, and temporary reaches are frequent. Present in six geographical regions of the world, MCRs have similar environmental constraints and are ideal for testing intercontinental similarities between macroinvertebrate communities. 3. We examined aquatic macroinvertebrate taxon richness and composition in MCRs at three scales: regional, reach and macrohabitat. At the regional scale, the Mediterranean Basin had the highest taxon richness at family level, and southwestern Australia the lowest. Taxonomic composition showed c. 85% similarity between the northern hemisphere MCRs of California and the Mediterranean Basin, which were followed in similarity by South Africa. The two Australian MCRs (South west and South) showed a similarity to each other of about 70% whereas the Chilean fauna was the most distinct. 4. At the reach scale, taxon richness was not significantly different between permanent and temporary reaches in any MCR, whereas taxonomic composition was significantly different among northern hemisphere MCRs. At the macrohabitat scale, taxon richness was not significantly different between lotic and lentic macrohabitats within any of the MCRs, but differences in macroinvertebrate communities were found between macrohabitats when considering regions. 5. Our results show that the strength of similarity between distant but climatically similar regions is scale-dependent, being highest at the macrohabitat scale. Although the similarities in richness and composition at the macrohabitat scale are presumed to be universal, the seasonal predictability of drought in MCRs is expected to result in characteristic macroinvertebrate responses at the reach scale. We suggest, however, that regional evolutionary history and environmental characteristics may override this general pattern of a similar response of MCRs at different scales. The Mediterranean Basin and California, having similar historical and environmental condition, thus appeared as the most similar MCRs at all scales

    Use of fine-scale stratigraphy and chemostratigraphy to evaluate conditions of deposition and preservation of a Triassic lagerstätte, south-central Virginia

    No full text
    The rich, fossiliferous Triassic sediments exposed in the Virginia Solite Quarry include a 34-mm-thick “insect layer” that is notable for detailed preservation of soft-bodied invertebrate and vertebrate remains. We describe this unique Konservat-Lagerstätte and use sedimentologic and geochemical analyses to interpret the environmental conditions necessary to preserve such delicate fossils. This work is among the first attempts to apply detailed geochemical/stratigraphic analysis to the study of Lagerstätten and we report on a 332-mm-thick section that includes the insect layer and the rocks immediately below and above it. Our analysis successfully constrains various aspects of the depositional and diagenetic history of the Lagerstätte and permits a detailed analysis of changing conditions prior to, during, and after deposition. Geochemical and sedimentologic analyses of the insect layer and surrounding lithologies reveal a change from siliciclastic-dominated layers (Unit 1) to dolomite-siliciclastic laminites above (Unit 2 and the insect layer), separated by a boundary dolostone layer that is traceable for over 200 m. We interpret this sedimentary shift as the initial stages in the transgression of a shallow, saline, alkaline rift-basin lake over lake margin deposits. The absence of bioturbation by plants and benthic organisms, as well as a lack of predation on the insects, is not explained by significant water depth, but is instead more reasonably considered a result of the chemistry of the water at the lake margin, affected by groundwater seeps, which provided F-, Mg-, and Ca-rich fluids. Although the initial conditions of preservation are remarkable, it is equally impressive that the fossils survived extensive diagenesis, e.g. dissolution of quartz and coarsening of dolomite
    corecore