1,417 research outputs found

    Response Mixture Modeling: Accounting for Heterogeneity in Item Characteristics across Response Times

    Get PDF
    In item response theory modeling of responses and response times, it is commonly assumed that the item responses have the same characteristics across the response times. However, heterogeneity might arise in the data if subjects resort to different response processes when solving the test items. These differences may be within-subject effects, that is, a subject might use a certain process on some of the items and a different process with different item characteristics on the other items. If the probability of using one process over the other process depends on the subject’s response time, within-subject heterogeneity of the item characteristics across the response times arises. In this paper, the method of response mixture modeling is presented to account for such heterogeneity. Contrary to traditional mixture modeling where the full response vectors are classified, response mixture modeling involves classification of the individual elements in the response vector. In a simulation study, the response mixture model is shown to be viable in terms of parameter recovery. In addition, the response mixture model is applied to a real dataset to illustrate its use in investigating within-subject heterogeneity in the item characteristics across response times

    Response Mixture Modeling of Intraindividual Differences in Responses and Response Times to the Hungarian WISC-IV Block Design Test

    Get PDF
    Response times may constitute an important additional source of information about cognitive ability as it enables to distinguishing between different intraindividual response processes. In this paper, we present a method to disentangle interindividual variation from intraindividual variation in the responses and response times of 978 subjects to the 14 items of the Hungarian WISC-IV Block Design test. It is found that faster and slower responses differ in their measurement properties suggesting that there are intraindivual differences in the response processes adopted by the subjects

    Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs

    Get PDF
    Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information
    • …
    corecore