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ABSTRACT
Current approaches to model responses and response times to psychometric tests solely focus on
between-subject differences in speed and ability. Within subjects, speed and ability are assumed to
be constants. Violations of this assumption are generally absorbed in the residual of the model. As
a result, within-subject departures from the between-subject speed and ability level remain unde-
tected. Thesedeparturesmaybeof interest to the researcher as they reflect differences in the response
processes adopted on the items of a test. In this article, we propose a dynamic approach for responses
and response times based on hidden Markov modeling to account for within-subject differences in
responses and response times. A simulation study is conducted to demonstrate acceptable parameter
recovery and acceptable performance of various fit indices in distinguishing between different mod-
els. In addition, both a confirmatory and an exploratory application are presented to demonstrate the
practical value of the modeling approach.

Inferences about individual differences in psychological
abilities have traditionally been based on latent variables
that are operationalized using measurement models for
the responses to test items. Popular measurement models
include for example the Rasch model (Rasch, 1960), the
two-parameter model (Birnbaum, 1968), and the graded
response model (Samejima, 1969). Due to the increased
popularity of computerized testing, response times have
become available in addition to the responses. Such
response times may aid in estimating the latent ability
because of the “speed-accuracy tradeoff”—that is, faster
responses may tend to be less thought out.

Research has focused on how to incorporate this
additional source of information concerning individual
differences in the existing measurement models. Main
motivations to include the response times in the mea-
surement model have been to increase measurement
precision about the latent ability (e.g., Ranger & Ortner,
2011; Van der Linden, Entink, & Fox, 2010), to test sub-
stantive theories about cognitive processes (e.g., Klein
Entink, Kuhn, Hornke, & Fox, 2009; Van derMaas, Mole-
naar, Maris, Kievit, & Borsboom, 2011) and personality
constructs (Ferrando & Lorenzo-Seva, 2007a; 2007b),
and to improve test construction (item calibration,
item selection in adaptive testing, etc.; Van der Linden,
2007).

CONTACT Dylan Molenaar D.Molenaar@uva.nl Department of Psychology, University of Amsterdam, Weesperplein ,  XA, Amsterdam, The
Netherlands.

Currently, the dominant approach to the analysis
of responses and response times is the hierarchical
generalized linear modeling approach. In this approach, a
latent speed variable is operationalized using a measure-
ment model for the response times. This measurement
model is subsequently connected to the measurement
model for the responses. For example, the person and
item parameters from both measurement models can
be considered as random variables that have a common
multivariate normal distribution across the models (Glas
and van der Linden, 2010; Klein Entink, Fox, & van der
Linden, 2009; Loeys, Legrand, Schettino, & Pourtois,
2014; Van der Linden, 2007, 2009a). Other researchers
have simplified this model by only assuming a common
distribution for the speed and ability variables (Molenaar,
Tuerlinckx, & Van der Maas, 2015a; Ranger & Ortner,
2012; Wang, Chang, & Douglas, 2013; Wang, Fan, Chang,
and Douglas, 2013). Alternatively, the speed and ability
variables are assumed to be uncorrelated, but with lin-
ear cross-loadings of the response times on the ability
variable (Furneaux, 1961; Molenaar, Tuerlinckx, & Van
der Maas, 2015b, Thissen, 1983). This approach has
been extended to include nonlinear cross-loadings to
accommodate personality data (Ferrando and Lorenzo-
Seva, 2007a; 2007b; Molenaar et al., 2015b; Ranger,
2013).
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Between-subject differences

All these approaches have in common that they solely
model differences between subjects in ability and speed.
That is, the main effects of the respondents’ speed and the
respondents’ ability are captured by the latent speed and
latent ability variables. As these latent variables are static
variables, speed and ability are assumed to be constant
within subjects (Goldhammer & Kroehne, 2014; Meng,
Tao, & Chang, 2015; Van der Linden, 2009a). Thus, it is
assumed that respondents work with a constant speed
and a constant ability through the test. Statistically, this
assumption is relatively unproblematic as violations of
this assumption can—at least partly—be accommodated
by modeling the conditional dependence of the responses
and the response times of a given item (see Meng, Tao,
& Chang, 2015; Molenaar et al., 2015b; Ranger & Ortner,
2012). In addition, the effect of differential speededness
can be controlled for by design (Goldhammer, 2015;
Goldhammer & Kroehne, 2014; Van der Linden, 2009b;
Van der Linden, Scrams, & Schnipke, 1999). However,
these approaches, while accounting for violations of the
assumptions, do not allow the researcher to study how
speed and ability develop within subjects.

Within-subject differences

There are various reasons why a researcher might be
interested in within-subject differences in speed and
ability (Molenaar, 2015). First, the researcher may want
to assign different scores to different speed–ability com-
promises (see Maris & Van derMaas, 2012). That is, a fast
correct response might be given more credit as compared
to a slow correct response. A second reason, which is
the focus of this article, is that a researcher might be
interested in the underlying process that resulted in the
response. That is, theremay be differences in the response
process of an individual throughout the test administra-
tion. These differences may be due to the use of different
psychologically relevant solution strategies, for example,
if different cognitive strategies are being used to solve the
test items (Van der Maas & Jansen, 2003). Or, there might
be undesirable strategies such as faking on some of the
items of a test (Holden & Kroner, 1992) or the use of item
preknowledge (McLeod, Lewis, & Thissen, 2003). Other
examples include differences due to factors related to
“testing,” for instance, learning and practice effects (Car-
penter, Just, & Shell, 1990), posterror slowing (Rabbit,
1979), and fatigue and motivation issues (Mollenkopf,
1950).

If the differences in response processes are large
enough and if the response processes differ in their exe-
cution time, the measurement properties of the faster
responses will differ from those of the slower responses

reflecting that a different process underlies the measure-
ment. If respondents stick to the same response process
on all items of a test, this effect will be captured by the
between-subjects speed and ability variables. However, if
respondents switch between response processes during
test administration, this is a within-subjects effect.

Existing approaches

As discussed in the preceding, in the hierarchical general-
ized linearmodels, the within-subject effects are absorbed
in the residual of the model. Therefore, researchers have
focused on detecting different response processes by con-
sidering the residual response times. These residuals can
be tested for aberrances. For example, extreme residuals
may suggest the use of different response strategies (Van
der Linden & Guo, 2008), or trends in the residuals may
suggest an effect related to testing, such as learning dur-
ing the test or a decreased motivation (Van der Linden,
Breithaupt, Chuah, & Zhang, 2007) or warming up and
slowing down effects (Van der Linden, 2009b).

Besides the residual response time approach, the item
response theory (IRT) tree approach is suitable to detect
within-subject differences in responses and response
times (Partchev & De Boeck, 2012). In this approach,
the continuous response times are dichotomized into a
fast and slow category. As a result, the fast responses
can be investigated separately from the slow responses to
reveal possible differences among them. Finally, a suitable
approach to detectwithin-subject differences in speed and
ability due to rapid guessing behavior is the hierarchical
mixture modeling approach by Wang and Xu (2015). In
this model, faster responses are assumed to be the result
of a guessing process, which is modeled separately from
the slower responses.

Aim of the present study

In this article, we adopt a dynamic modeling approach to
separate the between-subjects variability from the within-
subjects variability (Molenaar, 2004). Specifically, using
a hidden Markov modeling framework (e.g., MacDonald
& Zucchini, 1997; Vermunt, Langeheine, & Bockenholt,
1999), we distinguish the between-subjects ability and
speed variables from the within-subjects states variables
(Hamaker, Nesselroade, & Molenaar, 2007). That is,
respondents are assumed to work at an overall speed and
overall ability level through the test, but for each item,
the response may be the result of a different state. The
states are Markov dependent and may differ in their mea-
surement properties. As a result, inferences can be made
about the nature of the response processes underlying
a given test. The present approach is embedded in the
hierarchical generalized linear modeling framework and
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therefore applicable to the modeling instances discussed
in the preceding. This approach has advantages over
the existing approaches: (a) It combines the response
and response time information into a single measure for
inferences about dynamic response behavior instead of
only considering the residual response times; (b) it takes
the dependency of the responses and response times
to subsequent items into account (e.g., if a respondent
guesses on a given item, he or she may be more likely to
guess on the next item); (c) it enables the formulation
of an explicit model-based multivariate approach to test
for dynamics in the response behavior of a given test
administration; (d) it enables researchers to specify the-
oretical constraints to identify specific answer strategies;
(e) it takes the possible differences in the measurement
properties of the different solution strategies or response
processes into account; (f) it avoids the dichotomiza-
tion of the continuous response times as in the IRT
tree approach, whereby we retain all information about
individual differences in the response times; and (g) it
provides a statistically justified distinction between faster
and slower responses instead of an ad hoc chosen cutoff
point. All these possibilities will be demonstrated in this
article.

The outline is as follows: First we derive the hidden
Markov modeling approach to the analysis of responses
and response times.Next, we present a simulation study to
establish the parameter recovery of themodel and to study
the performance of various fit indices in distinguishing
between models with and without different item states.
Then, we present an exploratory application to the knowl-
edge subtest of the Intelligence Structure Test (Amthauer,
Brocke, Liepmann, & Beauducel, 2001) and a confirma-
tory application of the model to data on the balance scale
task in children (Van der Maas & Janssen, 2003). We end
with a general discussion of the results.

HiddenMarkovmodeling of responses and
response times

To account for within-subject differences in the measure-
ment properties of faster and slower responses, we assume
an item-specific latent class variable, Cpi, to underlie the
response, Xpi, and the response time, Tpi, of respon-
dent p on item i. In the following, we assume that the
response times follow a log-normal distribution such that
the log-response times are normally distributed (see, e.g.,
Thissen, 1983; Van der Linden, 2007). The latent states of
the latent class variable, Cpi = 0, … , K-1, may represent
different response processes or different solution strate-
gies, where K represents the number of states, which is
chosen by the researcher aswill be explained in the follow-
ing. As the latent state on item imay depend on the latent

state on item i-1, we assume a Markov dependency of
order 1 for Cpi. Let xp denote the vector of item responses,
xp = [Xp1, Xp2, … Xpn]; let tp denote the vector of
log-response times, tp = [lnTp1, lnTp2, … , lnTpn]; and let
cp denote the vector of item states,

cp = [Cp1, Cp2, … , Cpn]. Then the joint data density is
given by

h
(
xp, t p

) =
K−1∑
Cp1=0

K−1∑
Cp2=0

. . .

K−1∑
Cpn=0

f
(
xp, t p|cp

) × P(Cp1)

×
n∏

i=2

P
(
Cpi|Cp(i−1)

)
(1)

where P(Cp1) is the initial state probability, which models
the probability that a response belongs to a given state at
item 1. In addition, P(Cpi|Cp(i−1)) is the transition proba-
bility, which models the dependency between the states
on subsequent items. Note that our approach of intro-
ducingMarkov-dependent item states is one possibility to
account for dynamic behavior; for other possibilities, see
Hamaker et al. (2007), Kempf (1977), Verhelst and Glas
(1993), and Wang, Berger, and Burdick (2013).

In this model, differences in item and person proper-
ties are not taken into account. The latent class variables
in cp will be conflated by differences between respondents
in overall ability (θp) and overall speed (τ p) and by dif-
ferences between items in overall easiness (β i) and over-
all time intensity (ν i). That is, we need to specify a mea-
surement model for the responses and the response times
to separate item effects, person effects, and the effect of
the latent state Cpi. We follow Molenaar et al. (2015a),
Ranger (2013), Ranger and Ortner (2012), Wang, Chang
et al. (2013), and Wang, Fan et al. (2013) and treat the
item parameters as fixed and the respondent parameters
as random. Note that Glas and Van der Linden (2010),
Klein Entink et al. (2009), andVan der Linden (2007) pro-
posed measurement models for responses and response
times incorporating both random person and random
item effects.

By assuming independence between xp and tp condi-
tional on θp and τ p within the states, cp, the bivariate data
density function factors as follows:

f
(
xp, t p|θp, τp, cp

) = P
(
xp|θp, cp

) × f
(
t p|τp, cp

)
.

As a result, we can specify separatemeasurementmod-
els for the responses and the response times within the
latent states. In the hierarchical generalized linear mod-
eling approach, models that have been considered for
the responses are the Rasch model (Loeys et al., 2014),
the two-parameter model (Thissen, 1983; Molenaar et al.,
2015a, 2015b), the graded response model (Molenaar
et al., 2015b; Ranger, 2013), the linear factor model (Fer-
rando & Lorenzo-Seva, 2007b), and the three-parameter



MULTIVARIATE BEHAVIORAL RESEARCH 609

model (Klein Entink et al., 2009; Van der Linden, 2007).
Here we specify a two-parameter model for binary item
scores within each state, that is

P
(
xp|θp, cp

) =
n∏

i=1

ω
(
αsi × θp + βsi

)xpi
× ω

(− [
αsi × θp + βsi

])1−xpi
,

where ω(.) is the logistic function. Parameters αsi and
βsi denote the discrimination and easiness parameters in
state Cpi = s on item i.

For the response times, measurementmodels that have
been considered are a log-normal model (Thissen, 1983;
Van der Linden, 2007), a proportional hazards model
(Loeys et al., 2014; Wang, Fan et al., 2013), a linear trans-
formation model (Wang, Chang et al., 2013), and a cate-
gorical model for discretized time (Ranger & Kuhn, 2012;
2013). Here we specify a log-normal model for continu-
ously distributed response times conditional on τ p within
each state; that is, the vector of log-response times, tp,
is assumed to have a conditional multivariate normal
distribution with uncorrelated components (lnTpi), that
is,

f
(
t p|τp, cp

) =
n∏

i=1

1√
2πσ 2

εi

×exp

[
−1
2

(
lnTpi − μpi|τp,Cpi

)2
σ 2

εi

]
,

withμpi|τp,Cpi = E(lnTpi|τp,Cpi) = νi − δs − τp with δ0
= 0, and δ0 � δ1 � · · · � δK-1, where ν i is the time inten-
sity parameter and σ εi

2 is the residual log-response time
variance. In addition, δs denotes the expected speed for
state Cpi = s. For identification reasons, we fix δ0 = 0.
In addition, the constraint δ0 � δ1 · · · δK−1 ensures that
the states are decreasing in their expected response time.
Thus, if we assume two states, δ1 denotes the mean dif-
ference in expected speed between states 0 and 1, where
state 1 has a larger speed (and smaller expected response
time). Therefore, a response Xpi has a higher probability
to be from state 0 if the corresponding log-response time
is closer to ν i – τ p, and the response has a higher proba-
bility to be from state 1 if the corresponding log-response
time is closer to ν i - δs – τ p.

Likelihood function

We focus on the log marginal likelihood of the data to
facilitate marginal maximum likelihood estimation dis-
cussed later. To this end, we assume a bivariate normal
distribution for the continuous latent variables θp and τ p,
withVAR(τ p)= σ τ

2, covariance σ θ τ , andVAR(θp)= σ θ
2

= 1. The logmarginal likelihood of response vector xp and

the log-response time vector tp given the model parame-
ter vector, η, is then given by

�
(
xp, t p;

) = ln
∫∫ ∞

−∞

K−1∑
Cp1

K−1∑
Cp2

· · ·
K−1∑
Cpn

P
(
xp|θp, cp

)
× f

(
t p|τp, θp, cp

)
P

(
Cp1

)
×

n∏
j=2

P
(
Cpj|Cp( j−1)

)
g
(
θp, τp

)
dθdτ,

where the initial state probability is parameterized as
βi1 = βi0+
β. In addition, the transition probabilities
are parameterized as P(Cpj = s|Cp( j−1) = r) = πs|r with
π0|r = 1 − ∑K−1

s=0 πs|r. That is, there are K initial state
probabilities andK× (K−1) transition probabilities. Note
that we assume time homogeneity of the Markov chain
(Bacci, Pandolfi, & Pennoni, 2014); that is, the transition
probabilities are equal for all subsequent items.

TheMarkov-dependent item statesmodel

The model described in the preceding is referred to as the
Markov-dependent item states model. The Markov struc-
ture of this model is thus characterized by time homo-
geneity of the n latent class variables each with K states.
The free parameters in η for this model are the n × (2
× K) item parameters for each state (αsi, βsi), the 2 ×
n response time parameters (ν i, and σ εi

2), the K-1 state
response time parameters (δs, for s �= 0), the K-1 initial
state parameters (π s, for s �= 0), the K× (K - 1) transition
parameters (π s|r, for s �= 0), and the population parame-
ters (σ τ

2 and σ θτ ). The total number of parameters is thus
equal to n × (2 × K) + 2 × n + 2 × (K − 1) + K × (K −
1) + 2. See Figure 1 for a schematic representation of the
model.

In the Markov dependent item states model, two fea-
tures are worth mentioning. The first feature is that the
response time parameters are assumed to be equal across
states while the item response parameters are allowed
to differ across states. Our main interest is to study the
differences across states in the item discrimination and
item easiness parameters to make inferences about the
response processes underlying the item responses. The
response times are used as a tool to accomplish this. Dif-
ferences between states in the item time intensity and
residual variance are therefore not our main interests and
make the model needlessly complex (it would increase
the number of item parameters from 2 × K + 2 to 4 ×
K + 2). Instead, we used the δs parameterization (which
can be seen as a uniform difference across states in the
time intensities) to identify—in a parsimonious way—
the faster states in terms of the faster responses and the
slower states in terms of the slower responses. We used
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Figure . Graphical representation of the Markov-dependent item
statesmodel. Dependency of the ability and speed loadings on the
latent states Cpi has been omitted from the graph for clarity.

a similar line of reasoning for the assumed homogeneity
of the Markov states. That is, we could have introduced
item-specific transition parameters making the Markov
states time heterogeneous. However, this would increase
model complexity severely while these additional param-
eters will not directly contribute to our substantive under-
standing of the differences between faster and slower
responses. We note, however, that if it is of theoreti-
cal or practical interest, it is certainly possible to relax
the time homogeneity assumption and the assumption
of state-independent time intensity and residual variance
parameters.

The second feature involves the fixed item effects in
the preceding model. In the log-normal model by Van
der Linden (2007), the item effects are considered as
random effects (see also Glas & Van der Linden, 2010).
Here, we follow Molenaar, Tuerlinckx, and Van der Maas
(2015b), Ranger and Ortner (2012), Van der Linden and
Guo (2008), Wang, Chang et al. (2013), and Wang, Fan
et al. (2013) and treat the item effects as fixed. Note
that Molenaar et al. (2015a) have shown that neglecting
the randomness in the item parameters does not notably
bias the results of the log-normal model for 20 or 40
items. We do however note that random item effects may
be valuable in some research situations (see De Boeck,
2008).

Special cases

We consider two special cases of the Markov-dependent
item states model in the preceding. The first special case
arises when the Markov dependencies between the latent
class variables in cp are dropped from the model, that
is,

P
(
cp

) = P
(
Cp1

)
P

(
Cp2

)
. . .P

(
Cpn

)
,

with time homogenous state probabilities

P
(
Cpi = s

) = πs for i = 1, . . . , n.

Thus, for each item, the respondents have a probabil-
ity of π s to respond according to the state smeasurement
model. We will refer to this model as the independent
item states model. This model follows from the Markov-
dependent item states model by omitting the K× (K− 1)
transition parameters (i.e., if π s|r = π s and π s|s = π s, the
transition parameters cancel out of the likelihood equa-
tion). That is, the probability to be in class s at a given
item does not depend on the state at the previous item and
equals π s for all items: for example, this will be the case
when the response strategy is chosen for each item inde-
pendently, irrespective of the strategy employed to answer
the previous items. The model contains n × (2 × K) + 2
× n + 2 × (K − 1) + 2 parameters and may be a useful
baseline model to make inferences about the presence of
dependencies between the item states by comparing its fit
to the fit of the Markov-dependent item states model. If,
in the independent item states model, one specifies K= 2,
α0i = α0 = 0, and β0i = β0 = ω−1(g) where g is a guessing
probability, then the resulting model is equivalent to the
mixture model byWang and Xu (2015) for rapid guessing
behavior.

The second special case arises when we omit all latent
class variables, cp, from the model. That is, in the inde-
pendent item states model, we specify π1 = 1 and αsi
= αri, βsi = βri, and δs = 0 for all s and r. The model
thus includes 4 × n + 2 parameters and is equiva-
lent to the hierarchical generalized linear model of Van
der Linden (2007) with random person effects and fixed
item effects (see Molenaar et al., 2015a; Ranger, 2013;
Ranger & Ortner, 2012; Wang, Chang et al., 2013; and
Wang, Fan et al., 2013). This will be appropriate when
any given respondent chooses one single response strat-
egy for all items and sticks to it during the entire test,
for example. This model without item states constitutes
a useful baseline model to make inferences about the
presence of dynamic item states by comparing its fit
to the Markov-dependent and independent item states
models.
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Exploratory and confirmatory use
The preceding dynamic item states models can be used
in an exploratory and confirmatory application. In an
exploratory application, there are no expectations about
the item states underlying the data. In such a case, all
parameters are estimated freely to infer differences in
measurement properties across faster and slower item
responses. As the Markov-dependent item states model
contains n × (2 × K) + 2 × n + 2 × (K − 1) + K ×
(K − 1) + 2 parameters and the independent item states
model contains n × (2 × K) + 2 × n + 2 × (K − 1) +
2 parameters, the full unconstrained model becomes very
demanding for K > 2. In exploratory settings we there-
fore advise that for moderate sample sizes (500–1,000), K
= 2 is used. In the following simulation study, we demon-
strate that this model is feasible for N = 500 and N =
1,000. We think that, in an exploratory setting, additional
states (K > 2) will not capture substantial patterns in the
data that are missed by the K = 2 model for sample sizes
around 500–1,000. That is, if the data truly contain five
states differing in their expected response times, the K =
2 exploratory model will be a reasonable approximation
that captures themost important patterns in the data. The
slow state will contain the measurement properties of the
slower states in the data, and the fast state will contain the
measurement properties of the faster states in the data. If
a researcher wants to know how many states are truly in
the data, either a very large sample size should be used, or
ideally, a theory about the number of states is considered
to enable a confirmatory application, as explained in the
following.

In exploratory settings, the item parameters αsi and βsi
and δs are used to quantify the differences inmeasurement
properties between the faster and slower item responses.
That is, if αsi and/or βsi are unequal across states, mea-
surement invariance is violated, indicating that the faster
responses measure a psychometrically different state than
the slower responses. Therefore, in some cases the differ-
ences among the states in αsi and βsi may be used to inter-
pret the item states. For example, fast guessing is char-
acterized by discrimination parameters that approach 0
and easiness parameters that approach the guessing level
in the fast state (e.g., ω−1(0.25) = −1.10 in the case of a
multiple-choice test with four answer options). In addi-
tion, item preknowledge will be reflected by small dis-
crimination and high easiness parameters in the fast class.
However, as with measurement invariance and differen-
tial item functioning research, sometimes it is unclear
why a violation occurs. This can then be addressed in
follow-up research (e.g., explaining the invariance using
covariates, see Steinmayr, Bergold, Margraf-Stiksrud, &
Freund, 2015).

In a confirmatory setting, the number of parameters
can be decreased substantially by introducing constraints
(e.g., by fixing the item easiness parameters to reflect a
fast-guessing state). Hereby, models with K > 2 are fea-
sible depending on the number of states expected theo-
retically. Identification of these models depends on the
exact constraints that are introduced by the researcher.
It is therefore important that in confirmatory applica-
tions of the model, the modeling results are carefully
checked on signals of nonidentification (e.g., large stan-
dard errors and ill conditioning of the Hessian matrix).
We also encourage researchers to use multiple sets of
starting values in both the exploratory and confirmatory
applications of the present model.

Another issue in confirmatory applications is related
to testing the number of states in the data. That is, mul-
tiple theories might exist that predict a different number
of states. In the simulation study, we identify fit indices
that are suitable to select among models with either
K = 1 (i.e., a static model) or K = 2. Similarly as in our
simulation study to follow, for K > 2, it has been found
that the Bayesian information criterion (BIC; Schwarz,
1978) performs satisfactorily while the Akaike informa-
tion criterion (AIC; Akaike, 1974) tends to underpenal-
ize model complexity (Celeux & Durand, 2008; Visser,
Raijmakers, & Molenaar, 2002). The bootstrapped likeli-
hood ratio statistic is also known to be suitable to deter-
mine the number of states in a Markov model (Gudicha,
Schmittman, Tekle, & Vermunt, 2015).

Estimation
The parameters from the models can be estimated using
marginal maximum likelihood estimation (MML; Bock
& Aitkin, 1981). To this end, the preceding models are
implemented in the LatentGOLD 5.0 software package
(Vermunt & Magidson, 2013). The integrals in the like-
lihood function are approximated using Gauss-Hermite
quadratures with 10 nodes per dimension (100 in total).
This function is optimized using the EM algorithm and
the Newton-Raphson algorithm. In the E-step of the EM
algorithm, the Baum-Welch forward-backward algorithm
is used to avoid the computation of the joint density of the
latent class variables in cp, which is numerically demand-
ing (Baum, Petrie, Soules, & Weiss, 1970; Vermunt, Tran,
& Magidson, 2008). To facilitate parameter estimation,
the logit of the initial state probability parameters,π s’ and
the transition probability parameters, π s|r’, are estimated.
In addition, σ τ

2 and σ θτ are estimated by estimating the
corresponding elements from the Cholesky decomposi-
tion of the covariance matrix of θ and τ , denoted σ τ

2’
and σ τθ ’. Note that σ θ

2 is not a free parameter in the
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model. The syntax to fit the different models is available
from the site of the first author.

Simulation study

The simulation study presented here served multiple pur-
poses. First, we wanted to establish whether true parame-
ter values can satisfactorily be recovered for the Markov-
dependent item state model and the independent item
state model. In addition, we wanted to establish the per-
formance of various fit indices in distinguishing between
the models with and without item states. As the dynamic
models become increasingly complex for increasingK, we
focus onK= 2 here. That is, a fast and a slow state. Adding
more states to the model is possible in principle, but addi-
tional constraints to identify each state are needed. We
will illustrate this in the application section.

Design

We simulated data according to the Markov-dependent
item state model, the independent item state model, and
the model without item states. We used 100 replications.
In the case of the models with item states, we manipu-
lated the expected speed difference between the two states,
δ1, into three levels, which we refer to as a “small” (δ1 =
0.4), medium” (δ1 = 0.5), and “large” (δ1 = 0.6) effect. In
addition, we manipulated the state stability into two lev-
els, “stable” and “unstable” states. The stability of the states
is defined by the transition probabilities, π1|0 and π1|1.
Larger values for π1|1 and smaller values for π1|0 indicate
more stable states. We chose π1|0 = 0.15 and π1|1 = 0.85
for the stable condition and π1|0 = 0.3 and π1|1 = 0.7 for
the unstable condition. Finally, we manipulated the sam-
ple size to be N = 500 and N = 1,000.

The remaining parameters are not manipulated. We
used 20 items. For the easiness parameters in state 1,
β1i, we used increasing, equally spaced values between
−2 and 2 for the 20 items. For the easiness parameters
in state 0, β0i, we used increasing, equally spaced values
between −1.5 and 2.5. Possibly, the difference between
β0i and β1i might also affect the success with which dif-
ferences between the two states are detected by the fit
indices. However, as the two states are formally defined in
terms of a difference in speed and not in terms of a differ-
ence in easiness (e.g., a “hard” and “easy” state), we chose
to manipulate δs instead of manipulating the difference
between β0i and β1i.

The discrimination parameters in state 1, α1i, were all
chosen to equal 1 for the odd items and 2 for the even
items. For the discrimination parameters in state 0,α0i, we
chose 1.5 for the odd items and 2.5 for the even items. For

the time intensity parameters in the response timemodel,
ν i, we used 2 for the odd items and 3 for the even items.
The residual response time variance, σ εi

2, was chosen to
equal 0.2. The latent speed factor variance, σ τ

2, was equal
to .01, and σ θτ was chosen to be 0.07 such that the correla-
tion between θp and τ p equaled .7. We chose this positive
correlation because of our own experiences with response
and response time modeling. However, we note that the
correlation between speed and ability can also be nega-
tive (see Van der Linden, 2009a). In addition, the values
for σ εi

2 and σ τ
2 may seem small but they are reasonable

in a response time modeling setting. That is, they result
in untransformed response times between approximately
2 and 14 seconds. Finally, for the dynamicmodels,π1 = .7
was used. For the staticmodelwithout item states, we used
the values of ν i, σ εi

2, and σ τ
2 discussed in the preceding

together with α1i and β1i from class 1 and with δ1 = 0.

Model selection

To see whether we can successfully distinguish the dif-
ferent models, we study the performance of various fit
indices in indicating the best fitting model under the dif-
ferent conditions of the simulation study. The three mod-
els considered here are nested according to the restrictions
discussed in the preceding. However, as these restric-
tions include various boundary constraints, we do not
consider the power of the likelihood ratio test to distin-
guish between the different models. Although the perfor-
mance of fit indices such as AIC and BIC may also suf-
fer from such boundary constraints (see, e.g., Greven &
Kneib, 2010), we identify specific fit indices that can be
successfully used to separate between competing models
despite these boundary constraints. Specifically, we focus
on the AIC and BIC previously discussed and the consis-
tent AIC (CAIC; Bozdogan, 1987), the AIC3 (Bozdogan,
1993), and the sample-size-adjusted BIC (saBIC; Sclove,
1987). For these fit indices it holds that a smaller value
indicates better model fit.

For eachmodel-fitting attempt, we ran 16 different sets
of random starting values. If the estimation algorithm did
not converge, we reran themodel at most twomore times,
again using 16 different sets of random starting values.
Only for a few cases, convergence issues remained after
these 3 estimation attempts. TheMarkov-dependent item
states model failed to converge in 13 of the 2,000 simu-
lated data sets; the independent item states model failed
to converge in 29 of the 2,000 simulated data sets. These
nonconverged cases concerned mainly cases in which the
true model was the static model without item states. We
retained the nonconverged cases as these will hardly affect
the results presented in the following.
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Figure . Boxplot of the parameter estimates of the Markov-dependent item states model in the medium effect size and stable classes
condition for N = . The solid line denotes the true parameter values. For the discrimination parameters αi and αi, the odd items
correspond to the upper line and the even items correspond to the lower line.

Results

Parameter recovery

Item parameters
We limit the presentation of the results for the recovery
of the item parameters to the medium effect size condi-
tion. The recovery for the small and the large effect size
condition follows a similar pattern of results. We study
parameter recovery of the item parameters by means of
a box plot of the parameter estimates in the case that the
true model is fit to the data. For the Markov-dependent
item statesmodel, these box plots are displayed in Figure 2
(N = 500) and Figure 3 (N = 1,000) for the easiness
parameters (β0i and β1i) and the discrimination parame-
ters (α0i and α1i). For the independent item states model,
the box plots of the parameter estimates are in Figure 4
(N = 500) and Figure 5 (N = 1,000). As can be seen, the
item parameters seem to be generally unbiased; that is,
the parameter estimates scatter around the true parameter
values for all items and for both dynamicmodels. The dis-
crimination parameters have generally more variability
as compared to the easiness parameters. In addition, the

parameter estimates in state 1 are associated with some-
what less variability as compared to the estimates in state
0 for both the easiness parameters and the discrimina-
tion parameters. This is due to state 0 being proportionally
smaller (π1 = .7). Finally, the parameter recovery in the
Markov-dependent item states model is generally associ-
ated with less variability in the estimates as compared to
the independent item states model.

Class parameters
For the initial state probability (Markov-dependent item
statesmodel) or state probability (independent item states
model) parameter π1, the transition parameters π1|0 and
π1|1 (Markov-dependent item states model), and the
state response time parameter, δ1, the results concern-
ing parameter recovery are in Table 1 for the Markov-
dependent item states model and in Table 2 for the
independent item states model. That is, the mean, stan-
dard deviation, and mean standard errors are depicted
for the parameter estimates in the true model (Markov-
dependent or independent item state model) for the dif-
ferent configurations of the parameters forN= 500. Note
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Figure . Boxplot of the parameter estimates of the Markov-dependent item states model in the medium effect size and stable classes
condition for N = ,. The solid line denotes the true parameter values. For the discrimination parameters αi and αi, the odd items
correspond to the upper line and the even items correspond to the lower line.

that we estimate the logit transformed parameters, π1
’,

π ’
1|0, and π ’

1|1 as discussed in the preceding; however,
we provide the parameter recovery results in terms of the
original parameterization (i.e., π1, π1|0, and π1|1). The
reported standard errors are obtained by the univariate
delta method. As can be seen from the table, true param-
eter values are generally recovered well, with slightly bet-
ter recovery for larger effect sizes and hardly any dif-
ference between the recovery in the independent item
states model and in the Markov-dependent item states
model. In general, standard errors decrease as the effect
size increases. For N = 1,000, results are similar. In addi-
tion, the recovery of the true parameter values for σ τ

2 and
σ τθ is good (not depicted).

Model selection

Tables 3, 4, and 5 contain the “selection rates” of the differ-
ent models.We defined a selection rate as the proportions
of replications in which the differentmodels are identified
as the best fitting model by the different fit indices when
the true model is a Markov-dependent item states model,
an independent item states model, or a static model

without item states. The selection rate in the case that a
given model is the true model is referred to as “hit rate”;
the selection rate in the case that a given model is not the
true model is referred to as “false positive rate.”

First, we focus on the hit rates and the false positive
rates when the true model is the Markov-dependent item
statesmodel, see Table 3. As can be seen, in general, the hit
rates of theMarkov-dependent item states model increase
for increasing N and δ1, and the hit rates decrease for
increasing π1|0. The hit rate of the BIC fit index is con-
servative for π1|0 = 0.3 and poor for π1|0 = 0.15 and
δ1 = 0.4, but the hit rates are acceptable for the other cases
(between 0.77 and 1.0). The AIC fit index has hit rates
close to 1 in all cases. The AIC3 index has hit rates close
to 1.0 in all cases except the case of N = 500, π1|0 = 0.30,
and δ = 0.4, where the hit rate equals 0.12. The CAIC fit
index has acceptable hit rates in the cases that π1|0 = 0.15
(close to 1.0 for medium and large effect sizes in δ1 but 0
for a small effect size). However, in the case that π1|0 =
0.30, the hit rate is close to 0.0 for N = 500 and conserva-
tive forN= 1,000 (only large for large effect in δ1). Finally,
the saBIC fit index is associated with acceptable to good
hit rates (only small for small effects in δ1).
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Figure . Boxplot of the parameter estimates of the independent item statesmodel in themedium effect size and stable classes condition
for N= . The solid line denotes the true parameter values. For the discrimination parameters αi and αi, the odd items correspond to
the upper line and the even items correspond to the lower line.

Next, we focus on the hit rates and false positive rates
of the independent item states model, see Table 4. As can
be seen from the table, in general, the hit rates are poor.
The hit rate is only acceptable for the AIC in the case that
δ1 = 0.6, and in the case δ1 = 0.5 for N = 1,000. For the
AIC3, the hit rate is only acceptable for N = 1,000 and
δ1 = 0.6. For all other fit indices and all other condi-
tions, the hit rates are unacceptable. As can be seen, the
static model without item states is in general the preferred
model over the independent item states model.

Finally, Table 5 contains the hit rates and false positive
rates when the truemodel is the staticmodel without item
states. Ideally, the Markov-dependent item states and the
independent item states models are not detected by any
of the fit indices as the best fitting model as this would
indicate that the fit indices might be biased in favor of the
dynamic models. As can be seen from the table, this is not
the case for the BIC, AIC3, CAIC, and saBIC. The AIC
indicates in 13% (N = 500) and 17% (N = 1,000) of the
replications wrongfully that the Markov-dependent item
states model underlies the data while the static model is
the true model. This fit index is thus associated with a
slightly increased false positive rate.

From the preceding, it appears that the independent
item states model is difficult to distinguish from a static
model while the Markov-dependent item states model
can be acceptably distinguished using the fit indices con-
sidered. That is, when the true model is an indepen-
dent item states model and a static model is fit to that
data, the misfit is only minor, causing the selection rates
to be small. On the contrary, when the true model is
a Markov-dependent item states model, fitting a static
model to the data causes more severe misfit, which results
in larger selection rates. To study the source of misfit,
we investigated which parameters in the static model are
biased systematically when the true model is a Markov-
dependent item states model, but which are not biased
(or only mildly) when the true model is an indepen-
dent item states model. It appeared that misfit is most
evident in the covariance between θ and τ . To see this,
we scaled the estimates of the covariance σ τθ into cor-
relations ρθτ (see Table 6). As can be seen, when the
true model is the independent item state model, but a
static model is fit to the data, ρθτ is hardly affected.
That is, the true value for the correlation equals 0.7, and
this value is acceptably recovered with mean estimates of
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Figure . Boxplot of the parameter estimates of the independent item statesmodel in themedium effect size and stable classes condition
for N = ,. The solid line denotes the true parameter values. For the discrimination parameters αi and αi, the odd items correspond
to the upper line and the even items correspond to the lower line.

Table . Mean, standard deviation (SD), andmean standard error (MSE) for the estimates of the class parameter, δ,π,π |, andπ | in the
simulation study for the different configurations of δ, π, π |, and π | in the Markov-dependent item states model for N= .

δ π π | π |

True Mean SD MSE True Mean SD MSE True Mean SD MSE True Mean SD MSE

. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . .

about 0.67. However, when theMarkov independent item
states model is the true model, the estimates of ρθτ are
greatly affected, with values between 0.39 and 0.58. Thus,

Table . Mean, standard deviation (SD), and mean standard error
(MSE) for the estimates of the class parameter, δ, π, π |, and π |,
in the simulation study for the different configurations of δ, π,
π |, and π | in the independent item states model for N= .

δ π

True Mean SD MSE True Mean SD MSE

. . . . . . . .
. . . . . . . .
. . . . . . . .

correlations between responses and response times are
underestimated in the static model, causing model misfit.
This misfit is not apparent if the true model is the inde-
pendent item states model, causing this model to be hard
to distinguish from the staticmodel.However, it should be
noted that the effect size for the independent item states
model is small. We return to this point in the discussion
section.

In conclusion, from the parameter recovery results, we
can conclude that the true values are retrieved generally
satisfactorily. In addition, from results of the fit indices,
it appears that the Markov-dependent model is generally
well separable from the independent item states model
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Table . Truemodel:Markov-dependent item statesmodel. Selection rates for theMarkov-dependent item statesmodel, the independent
item states model, and the static model without item states for the various conditions in the simulation study.

N π | δ Model fitted BIC AIC AIC CAIC saBIC

 . . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

, . . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

Note. BIC = Bayesian information criterion; AIC = Akaike information criterion; AIC = AIC with a penalty weight of  instead of ; CAIC = consistent AIC; saBIC =
sample-size-adjusted BIC.

Table . Truemodel: Independent item states model. Selection rates for theMarkov-dependent item states model, the independent item
states model, and the static model without item states for the various conditions in the simulation study.

N δ Model fitted BIC AIC AIC CAIC saBIC

 . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

, . Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

. Static . . . . .
Independent . . . . .
Markov . . . . .

Note. BIC = Bayesian information criterion; AIC = Akaike information criterion; AIC = AIC with a penalty weight of  instead of ; CAIC = consistent AIC; saBIC =
sample-size-adjusted BIC.
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Table . True model: Static model without item states. Selection
rates for the Markov-dependent item states model, the indepen-
dent item states model, and the static model without item states
for the various conditions in the simulation study.

Fit index

N Model fitted BIC AIC AIC CAIC saBIC

 Static . . . . .
Independent . . . . .
Markov . . . . .

, Static . . . . .
Independent . . . . .
Markov . . . . .

Note. BIC= Bayesian information criterion; AIC= Akaike information criterion;
AIC = AIC with a penalty weight of  instead of ; CAIC = consistent AIC;
saBIC= sample-size-adjusted BIC.

and static model without item states using the BIC, AIC,
CAIC, AIC3, and the saBIC. However, the AIC is associ-
atedwith a slightly increased false positive rate and should
thus be interpretedwith care. The independent item states
model, on the other hand, is hard to separate from the
static model. All fit indices generally favored the static
model when the true model was in fact an independent
item states model.

Application 1: Identifying within-subject
differences in the response process

Data

We now demonstrate how our model can be applied to
explore possible differences in solution strategies used by
the respondents. The data comprise the responses and
response times of 389 psychology freshmen on the 28
items of the knowledge subtest of the Dutch Intelligence
Structure Test (Amthauer et al., 2001).

Modeling

To the responses and response times, we applied the
Markov-dependent item states model with two states

Table . Mean, standard deviation (SD), and root mean squared
error (RMSE) of the correlation between θ and τ (i.e., ρθτ ) in the
static model without item states for different true models for N =
. The value of ρθτ equals . in all true models.

True model π | Mean SD RMSE

Static — . . .
Independent — . . .

— . . .
— . . .

Markov-dependent . . . .
. . .
. . .

. . . .
. . .
. . .

(K = 2), the independent item states model with two
states (K = 2), and the static model without item states.
Within the independent and Markov-dependent item
states model we also studied the degree to which the item
parameters differ across states. To this end we considered
a model in which we parameterized the discrimination
parameters in state 1 as follows:

αi1 = αi0+
α.

That is, we allowed for a uniform difference between
the discrimination parameters in state 1 as compared to
the discrimination parameters in state 0. We also consid-
ered a model in which we specified a similar effect on the
item easiness parameters in addition to the uniform effect
on the discriminations; that is,

βi1 = βi0+
β.

In addition, we studied a model with uniform differ-
ences on both the discrimination and easiness parame-
ters.

Using the best fitting model, we will illustrate how the
modeling results can be used tomake inferences about the
within-subject differences in the response process. To this
end, we compare (a) the raw log-response times; (b) the
standardized residual log-response time; and (c) the esti-
mated state probabilities. First, the raw log-response times
are simply the observed log-transformed response times
on the items. Making inferences based on the raw log-
response times is difficult because these response times
conflate item and respondent main effects. Therefore,
we also consider the standardized residual log-response
times. A comparable Bayesian version of this statistic has
been proposed by Van der Linden and Guo (2008) to
investigate aberrant response times. If the standardized
residual of a given response time is large, the response
time deviates from the model expectations given ν i and
τ p. This might suggest that a different response process
underlies this response (e.g., guessing, item preknowl-
edge, different response strategy, etc). Here we calculate
the standardized residual log-response times as follows:

zpi = lnTpi − (ν̂i − τ̂p)

σ̂εi
,

where ν̂i, and σ̂εi are the MML estimates from the static
model and τ̂p is the EAP estimate from the static model.
Finally, we consider the expected a posteriori (EAP) state
probabilities in the best fitting model. The information
included in these probabilities differs from the informa-
tion in the residuals zpi in the sense that the EAP state
probabilities also directly include information about the
responses (correct or false) and that they incorporate the
restrictions introduced in the Markov-dependent item
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Table . Model fit results for Application .

Model npar � BIC AIC AIC CAIC saBIC

: Static  −, , , , , ,
a: Full Independent  −, , , , , ,
b: Uniform difference in αsi  −, , , , 26,004 ,
c: Uniform difference in βsi  −, , , , , ,
d: Uniform difference in αsi and βsi  −, , , , , ,
a: Full Markov dependent  −, , , , , ,
b: Uniform difference in αsi  −, 25,857 25,274 25,421 26,004 25,390
c: Uniform difference in βsi  −, , , , , ,
d: Uniform difference in αsi and βsi  −, , , , , ,

Note. BIC = Bayesian information criterion; AIC = Akaike information criterion; AIC = AIC with a penalty weight of  instead of ; CAIC = consistent AIC; saBIC =
sample-size-adjusted BIC; npar = number of parameters in the model; � = value of the log marginal likelihood function at the solution. The smallest values are
in boldface.

states model (in this case the fast and slow restriction
imposed in δ).

Results

The model fit results are in Table 7. As can be seen, all
fit indices indicate Model 3b as the best fitting model (a
Markov-dependent item states model with uniform dif-
ference in αsi between the states and separate βsi param-
eters in each state). Note that although the CAIC for this
model is equal to the value ofModel 2b, all other fit indices
favor Model 3b. We therefore select Model 3b as the best
fitting model. For this model, the estimate of 
α (which
represents the uniform difference between α0i and α1i) is
equal to 0.02 (SE = 0.21) indicating that the faster and
slower responses do not differ in their discrimination. In
addition, the difference in mean speed between the two
states, δ1, was estimated to be 0.53 (SE = 0.02). For the
initial state and transition parameters in Model 3b, see
Table 8. As can be seen from the initial probabilities, the
slow state is larger at the first item. However, from the
transition probabilities, it can be seen that the slow state
is relatively unstable, and a large portion of the respon-
dents switch to the fast state during the test. In Figure 6
(top), themarginal probability of a correct response, P(Xpi
= 1|Cpi), is depicted for the fast (s = 1) and slow (s = 0)
states. The responses in the fast state are associated with
larger probabilities of a correct response as compared to
the responses in the slow state. In Figure 6 (bottom), it
is illustrated how the difference in marginal probability
in the different states is related to the violation of local

Table . Parameter estimates (standard errors) of the initial state
probabilities, π s, and the transition probabilities, π s|r.

s=  s= 

π s . (.) . (.)
π s|r r=  . (.) . (.)

r=  . (.) . (.)

Note. Standard errors are obtained from the standard errors of π s’ and π s|r’
using the delta method.

independence between the responses and the response
times. To this end, we estimated the residual correlations
between the responses and response times of the same
item using weighted least squares estimation in Mplus
(Muthén & Muthén, 2007) and plotted these against the
difference in P(Xpi|Cpi) in the slow state and the fast state.
As can be seen, most items are associated with negative
residual correlations, indicating that the faster responses
(smaller lnTpi) are associated with higher probability of a
correct response.

In Figures 7 and 8, the raw and standardized resid-
ual log-response times are displayed for four respondents
together with the estimated slow-state probabilities on all
items (based on Model 3b). First, in Figure 7, two exam-
ples are given for respondents that speed up during the
testing. As appears from the figure, the speeding-up effect
can hardly be seen from the raw response times as the item
differences in ν i mask the effect. From the standardized

Figure. Top: Plot of themarginal probability of a correct response
for the fast and slow state for each of the items. Bottom: The differ-
ence in themarginal probability of a correct response between the
states, denoted by Pslow – Pfast, as a function of the residual corre-
lation as estimated in the static model without item states.
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Figure . The estimated probability of a slow state response for two example respondents who show speeding up. Item numbers in bold
indicate that the response was incorrect.

residuals, the effect is noticeable for the first respondent
(top of the figure) but not so much for the second respon-
dent (bottom figure). A statistical test might be needed to
test the presence of the effect. From the state probabilities,
however, the effect is clear, with the responses to the first
half of the test items being generally more probable in the
slow state than in the fast state.

In Figure 8, two other example respondents are given
that have aberrances in their responding. For the first
respondent (top), item 23 stands out for the residual
response time that is not evident from the raw response
times. This item stands out also for the class probabili-
ties. However, the class probabilities also indicate that the
response to item 1 has a large probability of being in the
slow state. This is not apparent for zpi, as for the residu-
als, item 1 is about average. The difference between the
class probability and the residual for item 1 is due to the
class probability taking into account that the response to
item 1 has been correct. As can be seen from Figure 6, for
item 1, the slow state is associated with a higher probabil-
ity of correct. Therefore, the fact that the respondent did
item 1 correctly increases the probability of the response
being from the slow state. A similar example can be found
for the second respondent (bottom). Judged by the stan-
dardized residuals, item 17 also stands out, which is also

evident from the class probabilities. However, judged by
the class probabilities, item 10 also stands out, which is
not evident from the standardized residuals. Thus, the
results from the Markov-dependent states model can be
a valuable addition to the standardized residual method
in detecting differences in the response process within
subjects.

Application 2: Detecting within-subject
differences in solution strategies

Our model can be used not only to “discover” differ-
ing response strategies, as demonstrated in the previ-
ous section, but also to investigate and test psychologi-
cal theories about previously hypothesized strategies. The
present application demonstrates this confirmatory fea-
ture according to a theory by Siegler (1981; see also Van
der Maas & Jansen, 2003).

Data

We analyzed the balance scale task data of Van der Maas
and Jansen (2003). These data comprise the responses
and response times of 191 respondents (mean age 11.84,
minimum 6, maximum 25) to 76 balance scale items.
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Figure . The estimated probability of a slow state response for two example respondents who show aberrances in their responding. Item
numbers in bold indicate that the response was incorrect.

Each item displayed a picture of a balance scale with
equally heavy weights placed at pegs situated at equal dis-
tance from the fulcrum. The items differed in how many
weights are placed at each arm and at which pegs the
weights were placed. The numbers and distances of the
weights are altered according to eight different schemes
resulting in eight different item types (“simple balance,”
“simple weight,” “simple distance,” “conflict balance A,”
“conflict balance B,” “conflict weight,” “conflict distance,”
and “weight-distance”). For each item type, 10 items exist
except for the “weight-distance” scheme, where only 6
items exist.

The data were analyzed previously by Van der Maas
and Jansen (2003) using cluster analysis and regres-
sion analysis and by Molenaar et al. (2015a) using
generalized linear latent variable modeling. Both stud-
ies focused on the differences between respondents
in their use of solution strategies. In this article, we
investigate whether there are differences within respon-
dents in their solution strategies. That is, do respon-
dents consistently apply the same solution strategy to
all items, or do they switch between different solution
strategies?

Modeling

Van der Maas and Jansen (2003) discussed five solution
strategies of the balance scale items that can be derived
from the theory of Siegler (1981). Each strategy has dif-
ferent predictions about the proportion correct across the
eight different item types (see Table 9). The strategies are
ordered according to their complexity. That is, strategy
I is considered the least complex strategy as it involves
the least number of steps, while strategy V is the most
complex strategy as it involves all steps necessary to solve
all items correctly. Besides predictions about the correct

Table . Predicted item score when using one of the strategies for
each item type.

Item type Strategy I Strategy II Strategy III Strategy IV Strategy V

Simple balance     
Simple weight     
Simple distance     
Conflict balance A   /  
Conflict balance B   /  
Conflict distance   /  
Conflict weight   /  
Weight-distance     

Note. = incorrect; = correct; /= guess.
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Table . Parameter configuration for the latent class response
model.

Strategy

Item type n I II III IV V

Simple balance  β β β β β
Simple weight  β β β β β
Simple distance  −β β β β β
Conflict balance A  −β −β −.∗ β β
Conflict balance B  −β −β −.∗ −β β
Conflict distance  −β −β −.∗ β β
Conflict weight  β β −.∗ −β β
Weight-distance  β β β β β

∗This value is fixed to reflect guessing; that is, P(Xpi = |Cpi) = ω(βsi) =
ω(−.)� ..

proportion, the different strategies also differ in their pre-
dicted response times. That is, the more complex a strat-
egy, the more time children need to apply it as it involves
more steps. Molenaar et al. (2015a) translated these pre-
dictions into constraints in a latent variable model with
a categorical ability factor and a continuous speed factor.
The model is however solely between subjects. Here, we
use the predictions discussed in the preceding to iden-
tify a Markov-dependent item states model with five item
states where each item state represents a solution strat-
egy (see Table 10). As the number of items is relatively
large compared to the number of respondents, we assume
that items configured according to the same scheme (e.g.,
the simple balance scheme) have equal easiness. In addi-
tion, as the theory predicts that more complex strate-
gies require more time, we released the constraint on δs
(i.e., the constraint that δ0 � δ1 · · · δK − 1). We did con-
sider the constraint δ0 � δ1 � · · · � δ4, which is in line
with the theoretical predictions; however, this model did
not converge due to a clear violation of this constraint
(which will be shown in the following). We therefore
estimated δ1, … , δ4 freely (as δ0 = 0 for identification
purposes).

According to the theory by Siegler (1981), in this appli-
cation, the balance scale items measure a categorical abil-
ity (i.e., the solution strategies). If the responses to these
items would have been analyzed without the response
times, one would fit a five-component latent class mea-
surement model to these data (subject to the constraints
as discussed in Table 10). Adding the response times
and the Markov structure will not change this: The main
ability measured by the items is categorical. Therefore,
as both the ability and the states are categorical, they
coincide. Therefore, we do not include a main effect for
θ as this effect coincides with Cpi in this application.
Adding a continuous ability variable will not make sense
from the theory by Siegler (1981) as this theory does
not predict a continuum to underlie the item responses.
Thus, the measurement model for the responses in this

Table . Model fit results for Application .

Model npar � BIC AIC AIC CAIC saBIC

Static  −, , , , , ,
Independent  −, , , , , ,
Markov dependent  −, 26,729 26,557 26,610 26,782 26,562

Note. BIC = Bayesian information criterion; AIC = Akaike information crite-
rion; AIC = AIC with a penalty weight of  instead of ; CAIC = consistent
AIC; saBIC = sample-size-adjusted BIC; npar= number of parameters in the
model; � = value of the log marginal likelihood function at the solution. The
smallest values are in boldface.

application equals

P
(
xp|Cp1, . . . ,Cpn

) =
n∏

i=1

ω(βsi)
xpiω(− [βsi])1−xpi,

where βsi are subject to the constraints in Table 10.
The full model including the response, the response

times, and the Markov structure may seem numerically
demanding because of the many states (K = 5) and many
items (n = 76); however, the model is highly restricted,
containing only 53 parameters (as compared to the full
Markov-dependent item states model, which would have
contained 461 parameters for K equal to only 2 and n =
76). In addition, we carefully checked the results on con-
vergence issues (ill conditioning of theHessianmatrix and
extreme standard errors), but we have no reason to doubt
the final solution of the models.

Results

We fit the static baseline model (including θp and τ p),
the independent item states model, and the Markov-
dependent item states model to the data. The results con-
cerning model fit are in Table 11. As can be seen, the
Markov-dependent item states model is identified as the
best fittingmodel according to all fit indices. The parame-
ter estimates for the initial state probabilities and the state
speed parameter are in Table 12; the parameter estimates
for the transition probabilities are in Table 13. As can be
seen, Strategy I is highly stable. Children adopting this
strategy do not change to a different strategy. On the con-
trary, Strategy III is relatively unstable; children adopt-
ing this strategy are likely to switch to a different strategy.
From the estimates for δs, it can be seen that the predic-
tions by Siegler (1981) about the response times (i.e., that

Table . Parameter estimates (standard errors) of the initial state
probabilities π s and state speed parameter δs.

Strategy I II III IV V

π s . (.) . (.) . (.) . (.) . (.)
δs ∗ −. (.) −. (.) −. (.) −. (.)

Note. Standard errors are obtained from the standard errors of π s’ using the
delta method.
∗This parameter is fixed for identification purposes.
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Table . Parameter estimates (standard errors) of transition prob-
abilities π s|r.

Cpi I II III IV V

Cp(i-) I . (.) . (.) . (.) . (.) . (.)
II . (.) . (.) . (.) . (.) . (.)
III . (.) . (.) . (.) . (.) . (.)
IV . (.) . (.) . (.) . (.) . (.)
V . (.) . (.) . (.) . (.) . (.)

Note. Standard errors are obtained from the standard errors of π s|r’ using the
delta method.

the more complex strategies have larger response times
and thus smaller δs) only hold partly. That is, Strategies I,
II, and III are indeed decreasing in δs; however, strategies
IV and V require approximately as much time as Strategy
II.

Discussion

We presented a hidden Markov IRT modeling approach
for responses and response times. In this model, respon-
dents are assumed to switch between different item states
from item to item. The simulation study showed that the
proposed model is feasible and yields good parameter
recovery. Moreover, the example application to the intel-
ligence data demonstrated how our approach is useful to
explore differing response strategies, while the application
to the balance scale task demonstrated its use for testing
psychological theories regarding response strategies.

A dynamic model without Markov dependencies
between the item states was shown to be less successful in
detecting dynamic aspects in the response process. How-
ever, it should be noted that in the simulation study, the
difference in item easiness between the fast and slow states
was minor. Therefore, residual correlations between the
responses and response times were only around .02–.03,
which is very small. For larger differences in item easi-
ness between the item states, the hit rates will be larger.
Judged by the results of the simulation study, the hidden
Markovmodel is viable. However, in order to ensure iden-
tification of the model, we assumed that the transition
probabilities are homogenous over time. This assump-
tion should ideally be tested, which is possible in princi-
ple in the current modeling framework. However, as the
resulting model with time heterogeneity will include n x
n transition parameters, maximizing the resulting likeli-
hood function will be a challenging endeavor. A feasible
ad hoc approach might be to test the assumption on the
residual response times (zpi, see application 2) and the
residual responses (obtained in a similarway as zpi) simul-
taneously. The advantage is that no measurement model
parameters need to be estimated, only the (n − 1) × K ×
(K − 1) transition parameters.

An implication of the assumed Markov structure for
the item states is that the items should be administered in

the same order for all respondents. Therefore, the present
model cannot be applied to adaptive test data. However,
for such applications, the independent item states model
will constitute a suitable alternative as it does not assume
a structure among subsequent items.

In the simulation study, we compared the dynamic
models to a staticmodel with local independence between
the responses and response times. It would be interest-
ing to see how the fit of the dynamic models would com-
pare to the fit of a static model with residual correlations
(as applied with weighted least squares to the data of the
application). However, we did not do this because the
static model with residual correlations is not yet devel-
oped within a marginal maximum likelihood framework.
This hampers the direct comparison of the static model
with residual correlations to the dynamic models pre-
sented here.

In the model selection analysis, we manipulated the
mean speed between the states, the transition prob-
abilities, and the sample size. However, it should be
noted that the number of items will also affect the abil-
ity to distinguish between the different models, with
more items resulting in better separable models. In addi-
tion, we investigated model selection only by consider-
ing information-criteria-based fit indices such as the AIC
and BIC. This has the disadvantage that the difference
in likelihood of the different models is not taken into
account. That is, the size of the AIC differences between
the models is not used to calculate the hit rate. The only
information taken into account is which of the models
has the smallest fit index. As the models considered in
this article are all nested, it would be interesting to see
how likelihood-based (bootstrap) methods will perform
(Feng, &McCulloch, 1996; Gudicha et al., 2015; McLach-
lan, 1987). These methods do take the difference in likeli-
hood between twomodels into account by calculating the
power to reject themore constrainedmodel in favor of the
less constrained model. Finally, researchers may be inter-
ested in relating the estimated latent states of respondents
to external covariates such as age, teacher, or educational
program. The extension of our model to investigate such
research questions is straightforward although its applica-
tion remains a topic for future study.

Finally, a remark can be made about the applicabil-
ity of the methodology presented in this article to test
model misspecification in IRT. That is, the item states
model can be applied as a means to study person mis-
fit (e.g., Reise, 2000) or item misfit. For example, in a
given sample, if for some but not all respondents the
two-parameter model is violated, the deviating respon-
dents may form a separate state on the items due to dif-
ferent properties of their responses and response times.
These respondents can then be detected using posterior
class probabilities. In addition, if for some but not all
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items the two-parameter model is violated (e.g., a three-
parameter model holds for these items), the malfunction-
ing items can be detected by considering the differences
in item characteristics between the states. If these differ-
ences are large, the item can be considered to misfit the
two-parameter model.
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