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Abstract: Response times may constitute an important additional source of information about
cognitive ability as it enables to distinguishing between different intraindividual response processes.
In this paper, we present a method to disentangle interindividual variation from intraindividual
variation in the responses and response times of 978 subjects to the 14 items of the Hungarian WISC-IV
Block Design test. It is found that faster and slower responses differ in their measurement properties
suggesting that there are intraindivual differences in the response processes adopted by the subjects.

Keywords: response time modeling; intraindividual differences; cognitive ability; psychometrics

1. Introduction

The cognitive strategies or cognitive processes that underlie problem solving have been well
studied for various intelligence tests. For instance, in the Raven test [1], it was shown that subjects use
an incremental, reiterative strategy for encoding and inducing regularities in each problem. Some, but
not all, subjects use an abstract induction strategy and/or a dynamic working memory process (e.g., [2]).
Inferences about processes underlying problem solving have mainly been based on behavioral data
like verbal protocols, eye tracking, and direct observations. Interestingly, such inferences have all
been based on interindividual differences. In the present study, we will use the quantitative response
times to reveal possible intraindividual differences in the cognitive processes adopted to the block
design test.

The idea that response time is an important variable in intelligence testing dates back to Francis
Galton [3,4] who assessed intelligence using the time that subjects needed to respond to a stimulus.
Due to the lack of methods to accurately assess response time and due to the lack of statistical
methods to analyze the data, this idea did not receive a lot of attention at that time (see e.g., [5]).
However, nowadays, it is generally acknowledged that there is a clear interrelation between response
time and intelligence (e.g., [6], chapter 11). In Reference [7] (see also [8]), it is shown that this
interrelation can be well explained by the diffusion model [9,10], a sequential sampling model that
assumes that differences in responses and response times arise because of differences in an underlying
cognitive information accumulation process.

As the response times seem to incorporate important information about the underlying process
that resulted in the responses, it has been argued that the response times are an important source of
information in studying the validity of intelligence and ability tests [11,12]. Specifically, focusing on

J. Intell. 2016, 4, 10; doi:10.3390/jintelligence4030010 www.mdpi.com/journal/jintelligence

http://www.mdpi.com/journal/jintelligence
http://www.mdpi.com
http://www.mdpi.com/journal/jintelligence


J. Intell. 2016, 4, 10 2 of 20

response times may provide insight in the relation between cognitive abilities as operationalized by
latent variables on the one side and cognitive processing theories on the other side. Such a connection
may shed light on the relation between interindividual differences as modeled by latent cognitive
abilities and models for intraindividual processes [13–16].

Intraindividual processes can be hypothesized to underlie intelligence test scores from a dual
processing framework [17,18]. In this framework, faster responses are assumed to reflect more
automated processes that are proceduralized, parallel, and do not require active control, while slower
responses are assumed to reflect more controlled processes that are serial and require attentional
control. This distinction has been shown applicable to cognitive abilities. For instance, in arithmetic
tests it has been postulated that subjects use both a more automated, memory retrieval process, and a
more controlled calculation process to solve the problems of an arithmetic test [19]. Similarly, it has
been shown that decision-making may involve a slower selective search strategy or a faster pattern
recognition strategy in medical decisions [20] and in solving chess puzzles [21].

The dual processing framework may also be applicable to the block design test—the focus of the
present paper. That is, for the block design test two processes have been distinguished: a more analytic
process and a more global process. The global process involves trial and error, the subject rearranges
the block until the pattern matches the design. In the analytical process, the subject infers the position
of the blocks from the design first, and subsequently places the blocks in the right position to match
the design (e.g., [22–24]). Up until now, these processes have been assumed to exist interindividually,
however, it might be that subjects alternate between the different processes, or that subjects use both
processes simultaneously.

Partchev and De Boeck [25] showed that intraindividual differences in the response process to
intelligence test items indeed exist for a Matrix Reasoning test and a Verbal Analogies test. In their
approach, different latent variables were postulated to underlie the faster responses and the slower
responses. Next, it was tested whether these variables can be psychometrically distinguished in terms
of their correlation (i.e., whether the correlation between the two latent variables deviates from 1.0)
and in terms of their measurement properties (i.e., the item difficulty). Partchev and De Boeck found
that the latent variables underlying faster and slower responses are separate but correlated variables
characterized by different item difficulty parameters. Note that this approach accounts for both
inter- and intraindividual differences as the subjects differ in their overall position on the latent
variables (interindividual differences) and on the exact latent variable that underlies the response on a
given item (intraindividual differences). That is, the same subject can respond according to the fast
latent variable on one item and to the slow latent variable on the next.

To operationalize the fast and slow latent variables, Partchev and De Boeck [25] used both an
item median split and a person median spilt of the response times. Next, using one-parameter item
response theory models, the responses in the fast category are specified as indicators of a fast latent
ability variable and the responses in the slow category are specified as indicators of a slow latent ability
variable. This procedure has four challenges. First, the assignment to the fast and slow categories
is deterministic rather than stochastic which does not allow for measurement error in the category
assignment. Second, as the splits are carried out at the median, it is either assumed that the subjects use
the fast category as much as the slow category (person median split) or it is assumed that for each item,
the fast category is used as much as the slow category (item median split). Third, as the continuously
distributed response times are dichotomized, the information concerning individual differences within
each category (fast/slow) is not taken into account. Finally, fourth, possible differences in item
discrimination are not taken into account (although this is possible, see [26,27]) while this can be
expected due to the worst performance rule [7,8,28].

To accommodate the above challenges in the Partchev and De Boeck [25] study, Molenaar and
De Boeck [29] proposed the method of response mixture modeling. In this method, each response
by each subject is classified into a faster response class or a slower response class (corresponding
to the fast and slow categories of Partchev and De Boeck). This approach is contrary to traditional
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mixture modeling where all responses by a given subject are classified into faster and slower classes,
see Figure 1. In the model the above challenges in the Partchev and De Boeck study are addressed
explicitly as response class assignment is stochastic, response times are treated as continuous variables,
the faster and slower classes are not necessarily of equal size, and differences in item discriminations
are allowed. However, still some challenges remain. That is, the response mixture model by Molenaar
and De Boeck [29], assumes invariance of the response class sizes across items and the model does not
incorporate separate latent variables for the faster and slower responses. In addition, the model was
applied to a chess dataset and not to an intelligence dataset. The assumed invariance of the response
class sizes across items means that, although the proportion of faster and slower responses can be
different (e.g., 0.3 for slow and 0.7 for fast), the proportion of faster and slower responses is assumed
to be equal for all items (i.e., 0.3–0.7 for all items). This assumption may be violated as some items may
be more suitable for a faster response processes than other items.
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Therefore, the present paper has two aims: First, we present a generalization of the model by
Molenaar and De Boeck [29] that includes two separate latent variables for faster and slower responses,
and in which the assumption of class size invariance is relaxed. Second aim of this paper is to
apply this model to the item responses and item response times of the block design subtest of the
Hungarian standardization sample of the Wechsler Intelligence Scale for Children-IV (WISC-IV [30,31]).
This application adds to the application by Partchev and De Boeck [25] in that (1) we study whether the
findings by Partchtev and De Boeck replicate for the Wechsler test; and (2) using the new model, we can
investigate whether the faster and slower response class sizes are unequal (i.e., different from 0.5) and
whether they differ across items; and (3) we test whether there are differences in item discrimination
between faster and slower responses.

The outline of the present paper is as follows: First we introduce a commonly accepted
interindiviual latent variable approach to the analyses of responses and response times. Next, we
extend this approach to include intraindividual differences in the faster and slower latent variables.
Then, we apply the model to a simulated dataset to investigate parameter bias. Finally, we apply the
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model to the block design subtest of the Hungarian WISC-IV standardization data to make inferences
about the structure of cognitive ability for faster and slower responses.

2. Methods

2.1. Item Response Theory Modeling of Response Times

Arguably the most popular approach to the analysis of responses and response times is the
so-called hierarchical model of Van der Linden [32,33] (see also [34–38]). In this approach, first, a
measurement model is specified for the responses. Here, we follow the authors of [35] and use a
two-parameter model that is:

logitrPpXpi “ 1|θpqs “ αiθp ´βi (1)

where Xpi is the score of subject p on item i, θp is the latent ability variable, αi is the item discrimination
parameter, and βi is the item difficulty parameter. Next, the response time information is added to
this model. Some authors have introduced the response times to the model above as a covariate (e.g., [39,40]).
However, as argued by Van der Linden [33], this precludes separation of item differences and
interindividual differences in the response time distribution. Pragmatically, this can be accomplished
by centering the response times within each subject and within each item. However no inferences
about interindividual differences in speed or item differences in time intensity can be made. A more
explicit statistical approach is therefore adopted here. We follow Van der Linden and specify a linear
measurement model for the log-transformed response times, that is,

lnTpi “ λi `ϕiτp ` εpi (2)

where lnTpi is the log-transformed response time of subject p on item i. The time intensity parameter,
λi, models the item effects on the response times. Some items require more time to be completed than
others irrespective of ability, for example, because more background information needs to be processed
(reading a text) or more operations need to be conducted (3 + 3 ´ 2 versus 3 + 3). The latent speed
variable, τp, models the interindividual differences in the response time distributions. That is, some
subjects are overall faster than others. Note that τp should be interpreted as a slowness factor as, due
to its positive sign in the equation above, subjects with higher levels of τp will have larger response
times. Finally, ϕi and εpi are respectively the slope parameter (time discrimination parameter) and the
residual in the linear regression of lnTpi on τp with homoscedastic variance, VAR(εpi) = σεi

2. In the
above, the log-transformation is used because the raw response times, Tpi, are bounded by zero and
skewed [41], which makes the assumption of linearity and homoscedasticity implausible. Therefore,
we assume that the raw response times have a log-normal distribution, such that the log-transformed
response times are normal (see also [32]).

To connect the separate models for the responses and response times in Equations (1) and (2),
we follow the authors of [35–38,42] and allow τp and θp to be correlated, that is:

corpτp, θpq “ ρ (3)

As discussed by [35,36], the resulting model is a two factor model with categorical indicators
(the responses) for the first factor (latent ability) and continuous indicators for the other factor
(response times). Note that this model assumes conditional independence, that is, conditional on the
latent speed and ability variables, the responses and response times are independent.

2.2. An Extension to Model Intraindividual Differences

Here, we retain the idea of separate measurement models for the responses and log-response
times. That is, for the response times we use Equation (2). However, for the responses, we follow
Partchev and De Boeck [25] and we use a separate two-parameter measurement model for the faster
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responses (“faster measurement model”) and a separate two-parameter measurement model for the
slower responses (“slower measurement model”). We avoid the necessity of median splitting the
response times by formulating the overall model for the responses as a mixture of the faster and slower
measurement models, that is:

PpXpi “ 1|θpsqp , θp f q
p q “ πpiPpXpi “ 1|θpsqp q ` p1´ πpiqPpXpi “ 1|θp f q

p q (4)

where πpi is the mixing proportion which denotes the probability that subject p answers item i using
the slower latent variable, θp

(s), as opposed to faster latent variable θp
(f ). The faster and slower

measurement models are then given by, respectively:

logitrPpXpi “ 1|θpsqp qs “ α
psq
i θ

psq
p ´β

psq
i (5)

and
logitrPpXpi “ 1|θp f q

p qs “ α
p f q
i θ

p f q
p ´β

p f q
i (6)

where
pθp

(f), θp
(s), τpq „ dmvnormpµ, Σq (7)

with

u “ r µτ µ
psq
θ µ

p f q
θ

s; Σ “

»

—

–

σ2
τ

σ
psq
τθ σ

2psq
θ

σ
p f q
τθ σ

psqp f q
θ σ

2p f q
θ

fi

ffi

fl

(8)

That is, the latent variables are multivariate normal and are allowed to covary.
To specify the faster responses as indicators in the faster measurement model and the slower

responses as indicators in the slower measurement model, the mixing proportion πpi is made a function
of the residual response time, εpi. That is:

logitpπpiq “ ζ1ipεpi ´ ζ0iq (9)

where parameter ζ1i is the faster-slower slope parameter which models the degree to which item i
can distinguish between the faster and slower classes. That is, for larger ζ1i, the item contains more
information about the different measurement models for faster and slower responses. This parameter
is constrained to be non-negative to ensure that the parameters in the slower measurement model
(i.e., αi

(s) and βi
(s)) correspond to the measurement properties of the slower responses (i.e., larger εpi).

The parameter ζ0i is a threshold parameter, which indicates how many responses are classified as
slower for item i. The larger ζ0i is, the less responses are classified as “slower”. That is, due to this
parameterization, ζ0i can be interpreted as the “difficulty” to respond slowly. From the parameter
estimates for ζ1i, ζ0i, and σεi

2, the class size of the slower class, πi
(s), can be calculated for each item.1

Note that the item median split procedure used by Partchev and De Boeck [25] assumes that πi
(s) = 0.5

which corresponds to ζ0i = 0.
In Equation (9), note that the residual response time, εpi, does not include the main effect of the

subjects and the main effect of the items on the log-response times. Therefore, a given response is more
likely to be classified into the faster/slower measurement model if the response is faster/slower than
expected for that subject on that item. For instance, a response of 2 s to a given item can be classified as
“faster” for one subject but as “slower” for another subject depending on the subjects’ overall level
of speed, τp. Similarly, a response of 2 s for a given subject can be classified as “faster” for one item
but as “slower” for another item depending on the intensity of the items, λi. This is the key difference

1 Specifically, πi
(s) is obtained by integrating out εpi from Equation (9). That is, πi

(s) =
ş8

´8
ωrζ1 ˆ pεpi ´ ζ0iqsϕpεpi{σεiqdεpi ,

whereω( ) is a logistic function and ϕ( ) is the standard normal density function.
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with interindividual mixture modeling which classifies subjects and not the separate responses into
the mixture components. As the model above is a generalization of the response mixture model by
Molenaar and De Boeck [29] as we discuss below, we also refer to the model above as response mixture
model. Note that the model assumes that the faster and slower classes hold within all subjects in
the population. However, the posterior class probability for each subject-item combination (πpi) may
reveal that a given subject hardly uses one of the classes, suggesting that there is only a single process
for this subject.

To identify the full model above, some constraints are necessary. To identify the scales and location
of the latent variables, στ2 = σ2

θ
(s) = σ2

θ
(f ) = 1 and µ = {0,0,0} respectively. If restricted versions of the

model are considered, for instance a model with αi
(s) = αi

(f ), some of these constraints can be dropped,
that is σθ(s) or σθ(f ) can be freed allowing for a scalar effect of the faster/slower response class on the
discrimination parameters. Similarly, in a model with βi

(s) = βi
(f ), the mean of the faster or slower

latent variable can be freed, µ(s) or µ(f ), allowing for a scalar effect on the difficulty parameters.

Special Cases

As discussed, the intraindividual differences model above is a generalization of the response
mixture model by Molenaar and De Boeck [29]. That is, if in the model above, one uses the same latent
variable in the faster and slower measurement models (i.e., cor(θ(s), θ(f )) = 1), and if ζ0i and ζ1i are fixed
to be equal across items (i.e., ζ0i = ζ0, and ζ1i = ζ1), the model is equivalent to the model by Molenaar
and De Boeck.

The traditional model in Equations (1)–(3) can be obtained from the full model by specifying θ(s)

and θ(f ) to be psychometrically fully equivalent. Equivalence of θ(s) and θ(f ) implies that αi
(s) = αi

(f ),
βi

(s) = βi
(f ), cor(θ(s), θ(f )) = 1, σ2

θ
(s) = σ2

θ
(f ), and ζ1i = 0. Given these restrictions, πpi will cancel out

Equation (4) because it will hold that PpXpi “ 1|θpsqp q = PpXpi “ 1|θp f q
p q, as a result, parameter ζ0 will

not be in the model anymore.

2.3. Conditional Dependence

As discussed above, in the traditional interindividual differences model outlined by
Equations (1)–(3), it is assumed that conditional on the latent speed and the latent ability variable, τp

and θp, the responses and response times of item i are independent. In the intraindividual extension
of this model outlined by Equations (4)–(9), conditional dependence is explicitly modeled: If ζ1i in
Equation (9) deviates from 0, the measurement properties of the responses depend on the length of the
response times. That is, there are intraindividual differences in the measurement model that applies to
the responses, reflecting the use of different response processes.

Any phenomenon that leads to fluctuations in ability and speed throughout the test administration
will result in violations of conditional independence between responses and response times [43].
Therefore, if subjects make more (or less) errors and respond faster (or slower) throughout the test
irrespective of the difficulty and the time intensity of the items, conditional independence will be
violated. This may for instance happen due to practice, decreased motivation, or increased fatigue
throughout the test administration. Such a trend will be captured by the faster and slower classes in
the present approach. This will be evident from the results. That is, in the case of learning, the faster
response class will be larger (larger ζ0i) and less difficult (smaller β1i) for later items. In the case of a
decreased motivation (faster responses with more errors for later items), the faster response class will
be larger but the items will be more difficult in this class. In the discussion we return to this point.

2.4. Estimation

We implemented a Bayesian Markov Chain Monte Carlo procedure (MCMC; see, e.g., [44]) within
the OpenBUGS software package [45]. To this end we specified N(0,10) prior distributions for the
parameters βi

(s), βi
(f ), ϕi, and λi. In addition, for the parameters αi

(s), and αi
(f ) we specified N(0,10)

prior distributions that are truncated below 0.01 to ensure that the parameter values are strictly positive.
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For ζ1i, we truncated the N(0,10) prior below 0. We specified a N(0,10) on log(σε2). We scaled the
latent variable by fixing their variances to equal 1, therefore, Σ is a 3 ˆ 3 correlation matrix, which we
decompose as follows:

Σ “ ΓΓT ` diagp13´ Γ2q (10)

where Γ is a 3 ˆ 1 column vector with parameters γk for k = 1, 2, 3 and 13 is a 3 ˆ 1 column vector of
1 s. For each element of Γ we specified a uniform prior from ´1 to 1. Finally, in Equation (9), εpi does
not need to be estimated from the data, as it can be calculated by:

εpi “ T˚pi ´ϕiτp ´ γi (11)

that is, the residual response time is the log-response time corrected for the main effect of the subjects
and the main effect of the items. See the website of the first author for the OpenBUGS script.

3. Simulated Data Application

3.1. Data Generation

To show the viability of the present approach, we applied the response mixture model to a
simulated data set. Data were simulated using 2000 subjects and 30 items. The following true
parameter values were used: First, for the discrimination parameters we created of a vector of
increasing and equally spaced values that were subsequently assigned randomly to the items 1 to 30.
For αi

(f ) we used values between 1 and 2 and for αi
(s) we used values between 2 and 3 to reflect that

slower responses discriminate better than faster responses (i.e., according to the “worst performance
rule” [28]). For the difficulty parameters we used increasing, equally spaced values between
´2 and 1 for βi

(f ) and between ´1 and 2 for βi
(s) to reflect that faster responses are associated with

less errors as compared to slower responses [25]. Next, for ζ0i we used increasing and equally spaced
values between ´0.5 and 0.5. Note that the items are thus ordered on both their difficulty (βi

(s) and
βi

(f )) and their threshold parameter (ζ0i) reflecting that the harder the item, the more likely subjects
are to resort to slower processes. This relation between item difficulty and the slower process has
been chosen based on the real data application below. For the true values of the slope parameters,
ζ1i, we created of a vector of increasing and equally spaced values between 1 and 3 that were
subsequently assigned randomly to the items 1 to 30. In addition, the correlations in Σ were fixed
to cor(θ(s), θ(f )) = 0.8, cor(τ, θ(s)) = ´0.6, and cor(τ, θ(f )) = ´0.7. Note that although these correlations
are large, they are not exceptional as for the Block Design application below, we found even larger
correlations. Finally, the other parameters were fixed to: ϕi = 2, σεi

2 = 3, λi = 2 for all i.

3.2. Results

Using our OpenBUGS implementation of the model, we drew 150,000 samples from the posterior
parameter distribution of which we discarded the first 75,000 samples as burn-in. Preliminary data
simulations showed that this is sufficient to ensure convergence of the chain to its stationary
distribution. In Figure 2, trace plots are depicted for the parameters αi

(f ), αi
(s), ζ0i, and ζ1i for item 1,

trace plots for the other parameters were similar. As can be seen, after the burn-in samples (solid grey
line), the samples scatter randomly around a stable average.
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randomly to the items 1 to 30. In addition, the correlations in Σ were fixed to cor(θ(s), θ(f)) = 0.8, cor(τ, 
θ(s)) = −0.6, and cor(τ, θ(f)) = −0.7. Note that although these correlations are large, they are not 
exceptional as for the Block Design application below, we found even larger correlations. Finally, the 
other parameters were fixed to: ϕi = 2, σεi2 = 3, λi = 2 for all i. 

3.2. Results 

Using our OpenBUGS implementation of the model, we drew 150,000 samples from the 
posterior parameter distribution of which we discarded the first 75,000 samples as burn-in. 
Preliminary data simulations showed that this is sufficient to ensure convergence of the chain to its 
stationary distribution. In Figure 2, trace plots are depicted for the parameters αi(f), αi(s), ζ0i, and ζ1i for 
item 1, trace plots for the other parameters were similar. As can be seen, after the burn-in samples 
(solid grey line), the samples scatter randomly around a stable average. 
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(f ), and ζ0i parameter recovery is good. For the αi
(s) and ζ1i parameters, estimates are

characterized by larger variability as compared to the other parameters. In addition, they tend to
be slightly biased. However, given the large variability in the parameter estimates the bias does not
seem to be severe. We investigate this possible bias in more depth in the application section where we
simulate data given the results of the block design data. With respect to the variability in the parameter
estimates, it can be concluded that the power to reject the restriction αi

(s) = αi
(f ) will generally be

small. In practice it seems, thus, advisable to consider restricting αi
(s) = αi

(f ). In addition, ζ1i could
be constrained to be equal across items to decrease parameter variability in this parameter. We will
consider these possibilities in the real data application next.
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4. Application to the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) Block
Design Test

4.1. Data

Here we present an analysis of the Hungarian standardization data of the Block Design subtest
from the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV [30,31]). This test involves
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arranging colored blocks as fast as possible into a displayed pattern. There are 14 items that are scored
1 (correct) and 0 (false). Response times are recorded starting at the moment that the subject was
presented with the item until the moment that the subject indicated that he or she was finished,
gave up, or the time was up. The number of subjects equals 978 with an age range between
6 and 15. Preliminary analysis indicated that measurement invariance of the response and response
time measurement model in Equations (1)–(3) is tenable for older and younger subjects. The older
subjects are overall more accurate and faster with more variance in their responses and response times
(as reflected in a significant difference in the mean and variance of both θ and τ; results are available
upon request). These differences between the younger and older subjects may reflect differences in
response processes across ages. For instance, as shown by Rozencwajg and Corroyer [46], children
of different ages use the same processes (global and analytic), but older children use the analytic
process more often than the global processes. Therefore, we think that for our modeling approach,
the differences between young and old as reported above are not necessarily a problem as these
differences will be captured in the response class membership of the subjects (i.e., the responses of the
older subjects—which are overall faster and more accurate—will be classified more often in a fast and
accurate response class and less often in a slow and inaccurate response class).

Proportions correct for the 14 items are 0.999, 0.991, 0.980, 0.942, 0.906, 0.876, 0.835, 0.707, 0.705,
0.625, 0.489, 0.505, 0.377, and 0.210, respectively. The response times are between 1 and 360 s such
that the log-response times are between 0 and 6, see Figure 4 for a box plot of the log-response
time distributions.
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4.2. Results

4.2.1. Conditional Independence

As violations of conditional independence indicate intraindividual differences in the response
measurement properties across response times, we started by testing for conditional independence
between the responses and response times of the items. Specifically, we fit the traditional model in
Equations (1)–(3) to the data using weighted least squares estimation in Mplus [47] with and without
residual correlations between the responses and response times of the items. Note that the model with
residual correlations between the responses and response times is identical to the model proposed by
the authors of [36]. For other more Bayesian oriented approaches see References [48,49].

For each item we consulted (1) the univariate modification index of the correlation between the
responses and the response times in the traditional model (i.e., the model without residual correlations);
and (2) the size of the residual correlation between the responses and response times in the model
with residual correlations. The modification indices are related to the Lagrange multiplier test [50]
proposed by the authors of [43] to test the assumption of conditional independence of responses and
response times. Modification indices are chi-square distributed with 1 degree of freedom and indicate
the impact of a parameter constraint on the log-likelihood of the model. Note that the modification
indices are estimated under the assumption that conditional independence holds for all other items.
See Table 1 for both the modification indices and the residual correlations. As can be seen, conditional
independence is clearly violated for most of the items, although effect size is small. This finding is in
line with [43] who found this type of conditional independence being violated in most of the items in
a large-scale computerized test. Interestingly, the residual correlations are negative for all items but
item 1, indicating that slower responses (higher εpi) are associated with a smaller probability of a correct
response. This is not due to the brighter subjects being faster, as the residual correlation is separate
from the main ability and speed effects (as these are captured by the respective latent variables).

Table 1. Modification indices (Mod.) and residual correlations (Cor.) between the responses and
response times of the items.

Item Mod. Cor.

1 28.59 0.35
2 1.41 ´0.16
3 7.87 ´0.12
4 6.06 ´0.07
5 14.24 ´0.11
6 13.14 ´0.15
7 8.41 ´0.13
8 5.59 ´0.11
9 12.44 ´0.14

10 7.44 ´0.11
11 14.37 ´0.13
12 14.99 ´0.13
13 24.46 ´0.16
14 70.64 ´0.16

Note: Mod. are obtained in a model without residual correlations between responses and response times,
while Cor. are obtained in a model with residual correlations.

4.2.2. Response Mixture Models

To investigate how faster responses differ in their measurement properties as compared to slower
responses, we resorted to the response mixture models outlined in this paper. We fit different models
to the data. First, the traditional model from Equations (1)–(3) was fit as a baseline model (Model #0;
i.e., a model without mixtures, as discussed above). For this model, we run 10,000 iterations with
5000 as burn-in as this was already sufficient for convergence. Table 2 depicts the discrimination
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parameters (αi) and the difficulty parameters (βi) for the baseline model. In this model, no distinction
is made between a faster and a slower measurement model. That is, this model is misspecified with
respect to conditional dependence. As can be seen, the items increase in their difficulty and the
discrimination parameters differ notably between items. In addition, the parameters of item 1 and
2 are associated with relatively large uncertainty (reflected by the large standard deviation of the
parameters). This is due to the large proportion correct for these items (i.e., only 1 and 8 subjects failed
on these items, respectively).

Table 2. Model #0: Means and standard deviations (sd) for the samples from the posterior distribution
of the parameters in the measurement model for the responses.

i
αi βi

mean sd mean sd

1 0.56 0.43 ´6.91 0.91
2 1.74 0.39 ´6.13 0.68
3 2.79 0.48 ´6.84 0.83
4 2.76 0.33 ´5.16 0.47
5 3.05 0.32 ´4.59 0.39
6 3.42 0.37 ´4.37 0.41
7 3.54 0.35 ´3.76 0.35
8 4.56 0.43 ´2.55 0.28
9 3.99 0.36 ´2.09 0.24

10 4.58 0.41 ´1.16 0.22
11 5.32 0.57 0.90 0.25
12 5.62 0.62 0.86 0.26
13 4.42 0.48 2.32 0.30
14 1.82 0.20 2.34 0.19

Next, a series of response mixture models was fit to the data. For the response mixture models,
we run two chains of 500,000 iterations each. We omitted the first 250,000 as burn-in. To check
whether the MCMC sampling scheme converged to its stationary distribution we considered trace
plots of the parameters and the Gelman and Rubin statistic on the equality of the variance across the
two chains [51]. First, from the trace plots all chains seemed to vary randomly around a stable average.
Second, the Gelman and Rubin statistic for all parameters were close to 1.00.

Table 3 depicts the Deviance Information Criterion (DIC [52]), and a modified version of the
Akaike’s Information Criterion [53] and the Bayesian Information Criterion [54], referred to as mAIC
and mBIC, respectively. The mAIC and mBIC have been proposed by Molenaar and De Boeck [29]
for model comparison in response mixture models.2 In addition, Table 4 contains the correlations
between the latent variables in the different models together with σθ(s) and µθ(s). As can be seen from
the tables, a full model was considered with all parameters free (Model #1). In this model, the faster
and slower latent variables are highly correlated as is also found by Partchev and De Boeck [25]. We do
not compare the full model to the baseline model (Model #0) in terms of the DIC, mAIC and mBIC fit
indices as the models contain a different number of random effects (two in the baseline model and
three in the full model), which distorts model comparison (see, e.g., [55,56]). However, given that we
found that conditional independence was violated for most of the items (see above), it is suggested
that the full model should be preferred over the baseline model.

2 Specifically, the mAIC and mBIC use the same penalty of the deviance as the AIC and BIC, but in contrast with the traditional
AIC and BIC, the deviance is averaged over the samples of the MCMC procedure instead of evaluated at the maximum
likelihood estimates of the parameters.
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Table 3. DIC, mAIC, and mBIC model fit statistics for the models considered in the application.

Model Restriction(s) DIC mAIC mBIC

1 – 25,850 30,464 33,494
2 αi

(s) = αi
(f ) 25,690 30,389 33,407

3 αi
(s) = αi

(f ); βi
(s) = βi

(f ) 25,900 30,474 33,479
4 αi

(s) = αi
(f ); ζ1i = ζ1 25,570 30,232 33,236

5 αi
(s) = αi

(f ); ζ1i = ζ1; ζ0i = ζ0 25,940 30,339 33,329

Note: The best values for the fit indices are in boldface.

Table 4. Parameters for the latent variables in the models considered.

Model Restriction(s)
Correlations

σθ
(s) µθ

(s)

θ(s), θ(f ) τ, θ(s) τ, θ(f )

0 – – ´0.90 1 – – –
1 – 0.95 ´0.90 ´0.86 1 * 0 *
2 αi

(s) = αi
(f ) 0.95 ´0.90 ´0.86 1.20 (0.16) 0 *

3 αi
(s) = αi

(f ); βi
(s) = βi

(f ) 0.96 ´0.89 ´0.87 1.05 (0.06) ´0.97 (0.06)
4 αi

(s) = αi
(f ); ζ1i = ζ1 0.93 ´0.91 ´0.86 1.18 (0.14) 0 *

5 αi
(s) = αi

(f ); ζ1i = ζ1; ζ0i = ζ0 0.96 ´0.89 ´0.87 0.98 (0.09) 0 *

Note: Posterior standard deviations are in brackets. Model #0 is the baseline model as defined by
Equations (1)–(3); * these parameters are fixed for identification purposes. Note that for all models µθ(f ) = 0
and σ2

θ
(f ) = 1; 1 this is the correlation between τp and θp as there is not distinction between a faster and slower

latent variable in this model.

Next, we considered Model #2 with equal discrimination parameters across the faster and slower
measurement models (αi

(s) = αi
(f )) but with the standard deviation of the slower latent variable,

σθ
(s), free to allow for a uniform effect on the discrimination parameters. This model fit the data

better in terms of the DIC, mAIC, and mBIC as compared to the full model (Model #1). We therefore
proceeded by retaining the restriction on the discrimination parameters and additionally constraining
the difficulty parameters for the faster and slower responses to be equal (βi

(f ) = βi
(s)). We freed the

mean of the slower latent variable variable, µ(s), to allow for a scalar effect on the difficulty parameters.
This resulted in Model #3. The model fit the data worse as compared to Model #2 in terms of the DIC,
mAIC, and mBIC. We therefore concluded that the difficulty parameters differ across faster and slower
responses. In Model #4, we allowed the difficulty parameters to differ again between the faster and
slower responses; however, we constrained the slope parameters, ζ1i, to be equal across items (ζ1i = ζ1).
This restriction resulted in an improved DIC, mAIC, and mBIC as compared to Model #3. Additionally
constraining ζ0i to be equal across items (ζ0i = ζ0; Model #5) resulted in a deterioration in model fit.

As Model #4 is the best fitting model, we conclude that the slope parameters ζ1i are equal
across items [ζ1i = ζ1], that the discrimination parameters are equal for the faster and slower
classes [αi

(s) = αi
(f )], but that the difficulty parameters are different for the faster and slower

classes [βi
(s) ‰ βi

(f )]. In addition, the faster and slower response class sizes are unequal across
items [ζ0i ‰ ζ0]. In Model #4, the estimate for ζ1 equaled 10.72 (sd: 1.296; 95% Highest Posterior
Density region, HPD: 8.46; 13.52), which is large because its scale depends on the scale of εpi. That is,
for all items, σεi

2 equaled between 0.20 and 0.45.
As Model #3 is rejected in favor of Model #4, it can be concluded that the differences in the faster

and slower difficulty parameters do not only reflect an overall effect (i.e., a difference in µθ(s) and µθ(f ))
but also additional item specific effects. For the faster and slower discrimination parameters that are
shown to be equal for the faster and slower classes, there may still be an overall effect in Model #4 as
σθ

(s) is estimated freely. That is, in Table 4, it can be seen that the estimate for σθ(s) in Model #4 equaled
1.18. It is interesting to see whether this parameter deviates from 1 as this will indicate that the slower
responses discriminate overall better (as σθ(s) > 1 see Table 4) than the faster responses (as σθ(f ) = 1 for
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identification reasons). However, the 95% HPD region for σθ(s) runs from 0.93 to 1.48, thus, as this
interval contains 1, there is no clear evidence against the assumption that faster and slower responses
discriminate equally well in the WISC data.

For the estimates of αi, βi
(f ), βi

(s), and ζ0i in Model #4, see Table 5. From the 95% HPD regions it
appeared that only ζ0i departures from 0 for all items, except item 1 and 2. Indicating that the faster
and slower response class sizes are unequal (i.e., they depart from 0.5). In addition, Table 5, contains
the size of the slower response class (πi

(s)) on each item can be determined from the estimates of ζ0i, ζ1,
and σεi

2. As can be seen, the slower response class is used more often for the items at the end of the
test. As the items are administered in order of difficulty (as can also be seen in Table 2, the difficulty
increases for increasing item number), this result suggests that for more difficult items, respondents
resort more to slower response processes. With respect to the βi

(s) and βi
(f ) parameters estimates, it can

be seen that they differ substantially. In Figure 5 this difference is graphically displayed. For all items
the difficulty parameters are larger for the slower responses, except for item 1 (which explains the
negative residual correlations in Table 1).
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To investigate whether the results above are stable and do not depend too much on the exact
choice concerning the parameter restrictions, we also present the results for the model with equal
mixing parameters across items (i.e., ζ0i = ζ0; ζ1i = ζ1). In this model, ζ0 was estimated to be
0.32 (95% HPD: 0.27; 0.37) and ζ1 was estimated to be 10.00 (95% HPD 7.61; 13.08). From the results
(not displayed) it appeared that the differences between the faster and slower difficulty parameters are
somewhat smaller, however, the general effect from Figure 5 is still visible.

Simulation. As parameters αi
(s) and ζ1i tend to be slightly biased in the simulation study,

we investigated whether this is also the case given αi = αi
(s) = αi

(f ) and ζ1i = ζ1 as found above.
That is, we simulated data using the exact setup as in the application above. We used the final model,
Model #4, and fit Model #4 to these simulated data to see whether the αi, σθ(s), and ζ1 parameters
are adequately recovered. See Figure 6 for a plot of the true values of αi against the estimated values.
As can be seen, the true values are adequately recovery. In addition, the estimate for σθ(s) equaled
1.42 (95% HPD: 1.09; 1.78) where the true value is 1.18 (see Table 4), and the estimate of ζ1 equaled
9.22 (95% HPD: 7.61; 11.14) where the true value is 10.72 (see above). Thus, we think that the true
values are adequately recovered given the parameter variability.
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5. Discussion

This paper was motivated by the finding of Partchev and De Boeck [25] that for a Matrix Reasoning
and a Verbal Analogy intelligence subtest, faster responses load on a different latent variable with
different item difficulty parameters than slower responses. In this paper, we followed up on this
finding by (1) replicating the Partchev and De Boeck findings in the Block Design subtest of the WISC;
(2) by additionally testing whether item discrimination parameters differ across faster and slower
responses; and (3) by testing whether the faster and slower response class sizes are unequal and
whether they differ across items.

The results show that slower responses discriminate about equally well as compared to the
faster responses. This finding is in contrast with the “worst performance rule” [28], which predicts
that slower responses contain more information about individual differences in ability than faster
responses. This contrasting result might be due to a lack of power to detect a difference. That is, in the
simulation study it was shown that the slower discrimination parameters are associated with relatively
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large uncertainties. Although, in the application, we constrained the slower and faster discrimination
parameters to be equal, which would be expected to increase the power to detect an overall effect, it is
still possible that the power was too small to detect a difference. An in-depth study of the power to
detect unequal discrimination parameters across faster and slower responses given realistic effect sizes
seems valuable therefore.

On the other hand, the failure to find differences in discrimination between faster and slower
responses may suggest that the worst performance rule, which is typically established using
experimental task with very fast responses (500–1000 ms), does not hold for cognitive ability tasks with
responses that are substantially larger. For instance, the authors of [57] tested the worst performance
rule by correlating measures of fluid intelligence to the response times on a psychomotor vigilance task.
It was found that the higher quantiles of the response times correlated stronger with fluid intelligence.
However, response times on the psychomotor vigilance task were on average 274 ms for the first
quantile and 484 ms for the fifth quantile while in the present study, response times to the block design
task are between 1 and 360 s.

A second finding in the application is that slower responses are associated with less accuracy than
faster responses. This finding is in line with both [18,25]. It suggests that some responses take longer
because these responses are based on processes that are more error prone and inefficient as compared to
the faster responses. A final finding was that the faster and slower response class sizes are unequal and
differ across items with the slower response class being larger for the more difficult items. Overall, the
most important finding of the present study and the Partchev and De Boeck study [24] is that faster
responses differ in their measurement properties from the slower responses. This result indicates
that a different intraindividual process underlies the responses to the different items. In establishing
this, both in the present study and in the Partchev and De Boeck study it was assumed that the
response times can be separated into the binary categories of faster and slower responses. This binary
distinction can reflect a true dichotomy underlying the response times, as is the case in for instance
a dual processing framework [17,18]. For the present application to the WISC block design subtest,
the faster process might be a more analytic process and the slower process might be a more global
process (e.g., [24]). The exact substantive interpretation of the faster and slower response class however
need to be established using additional covariates. For instance, covariates like test taking behavior
(“trial and error” or “pattern memorization”), brain-imaging data, or eye tracking information can be
used to establish the nature of the two classes.

However, our results do not mean that there needs to be a true dichotomy underlying the response
processes of the block design subtest. That is, in our application we have used a dichotomy, but in
reality there may be multiple processes. For instance, Rozencwajg and Corroyer [46] argued for a
third, syntactic process to underlie the block design. This does not invalidate the present results as in
the case of multiple processes (e.g., A, B, C, D, E, and F), the faster and slower latent variables will
capture the variation in the item responses by the faster processes (e.g., A, B, and C) on the one hand
and the variation by the slower processes on the other hand (e.g., D, E, and F). Adopting a modeling
approach with more than two classes is possible in principle, but identification and estimation of such
a model is highly challenging. Other possibilities might be that a continuous mode of processing,
or a sequential use of processes (i.e., subjects use the slow process whenever the fast process was
unsuccessful) exist in reality. Then again, our approach can still capture the most important patterns in
the data (i.e., differences between the faster and slower responses).

Another result that needs discussion is the almost perfect correlation that was found between
the fast and slow latent ability variables. This result indicates that there is only one dimension
of interindividual differences underlying the block design test. As the item difficulties associated
with the latent abilities differed across the faster and slower classes, a dimension of intraindividual
differences can be distinguished as well. That is, the slower responses have different measurement
properties as compared to the faster responses suggesting a different response processes, but the
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underlying dimension of interindividual differences is the same. This result is similar to what is found
by DiTrapani, Jeon, De Boeck, and Partchev [27].

As we showed that intelligence subtests may be potentially heterogenous with respect to the
intraindividual processes that are measured, the results imply that for a given test administration one
should decide whether this source of intraindividual variation is considered desirable or a confound.
That is, does the intraindividual variation contribute to the validity of the test (e.g., [13]) or does it
provide a confound that should be eliminated (e.g., [58]). In the case of arithmetic tests for instance,
the heterogeneity in intraindividual processes may be considered desirable as the test taps into both
memory retrieval and problem solving, which are both aspects of arithmetic [19].

In other settings, differences in response times might be seen as a confound. For instance,
undesirable strategies such as faking on some of the items of a test [59], the use of item
preknowledge [60], learning and practice effects [2], post error slowing [61], and fatigue and motivation
issues [62], will all result in intraindividual variation that harms the validity of an intelligence test.
In addition, the authors of [58] discusses how different speed-accuracy compromises can be seen as a
confound. That is, subjects differ in the amount of time they use to solve a given item. Therefore, an
incorrect response may indicate either that the subject didn’t use enough time or it may reflect the
inability to solve that item. As a solution, [63] proposed the response signal paradigm. In this
paradigm a subject can only respond to a test item at a given moment after the item is presented
(e.g., after 20 s). Therefore, all response times will be equal for all subjects, which standardize the
speed-accuracy tradeoff within and between subjects. Heterogeneity may therefore be decreased
because some (but not all) subjects are not allowed enough time to solve a given item using a more
accurate but more time-consuming response process.
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