
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

The Hierarchical Rater Thresholds Model for Multiple Raters and Multiple Items

Molenaar, D.; Uluman, M.; Tavşancıl, E.; De Boeck, P.
DOI
10.1515/edu-2020-0105
Publication date
2021
Document Version
Final published version
Published in
Open Education Studies
License
CC BY

Link to publication

Citation for published version (APA):
Molenaar, D., Uluman, M., Tavşancıl, E., & De Boeck, P. (2021). The Hierarchical Rater
Thresholds Model for Multiple Raters and Multiple Items. Open Education Studies, 3(1), 33-
48. https://doi.org/10.1515/edu-2020-0105

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1515/edu-2020-0105
https://dare.uva.nl/personal/pure/en/publications/the-hierarchical-rater-thresholds-model-for-multiple-raters-and-multiple-items(13f56a2a-a88a-4167-9113-46f2ea3a0360).html
https://doi.org/10.1515/edu-2020-0105


Open Education Studies, 2021; 3: 33–48

Research Article

Dylan Molenaar*, Müge Uluman, Ezel Tavşancıl, Paul De Boeck

The Hierarchical Rater Thresholds Model for 
Multiple Raters and Multiple Items

https://doi.org/10.1515/edu-2020-0105 
received April 28, 2020; accepted October 5, 2020.

Abstract: In educational measurement, various methods 
have been proposed to infer student proficiency from the 
ratings of multiple items (e.g., essays) by multiple raters. 
However, suitable models quickly become numerically 
demanding or even unfeasible as separate latent variables 
are needed to account for local dependencies between the 
ratings of the same response. Therefore, in the present 
paper we derive a flexible approach based on Thurstone’s 
law of categorical judgment. The advantage of this 
approach is that it can be fit using weighted least squares 
estimation which is computationally less demanding as 
compared to most of the previous approaches in the case 
of an increasing number of latent variables. In addition, 
the new approach can be applied using existing latent 
variable modeling software. We illustrate the model on a 
real dataset from the Trends in International Mathematics 
and Science Study (TIMMSS) comprising ratings of 10 
items by 4 raters for 150 subjects. In addition, we compare 
the new model to existing models including the facet 
model, the hierarchical rater model, and the hierarchical 
rater latent class model.

Keywords: Rating data; Item response theory; Local 
independence; Hierarchical rater model.

1  Introduction
In the field of educational measurement inferences about 
students’ latent proficiencies underlying educational 
tests are commonly based on item response theory 
(IRT) modeling tools. In standard cases, the educational 

test is purported to measures a single proficiency 
(unidimensionality) without residual associations 
between the students’ observed scores on the different 
items (local independence). In educational practice 
however, items may be clustered because they measure 
multiple latent variables (e.g., in worded arithmetic 
problems) or because they concern different testlets. In 
addition, students may be clustered within classrooms 
and schools. Neglecting these properties of the testing 
situation violates the assumptions of the IRT model which 
can result in biased or inefficient inferences concerning 
the students’ proficiency (Sireci, Wainer & Thissen, 1991; 
Wainer, 1995; Wainer & Thissen, 1996). Therefore, more 
sophisticated models need to be considered including 
multidimensional IRT models (Béguin & Glas, 2001; 
Reckase, 2009), models for testlets (Bradlow, Wainer, & 
Wang, 1999; Cai, 2010a), and multilevel or hierarchical 
IRT models (Adams, Wilson, & Wu, 1997; Mislevy & Bock, 
1989; Fox & Glas, 2001). 

A specific testing situation in education measurement 
concerns the case in which the scoring of the student’s 
performance is not objectively possible using an answer 
key. For instance, in an essay assignment, the grade that 
a student obtains may depend on the rater that graded 
the essay. A straightforward and standard solution is to 
use multiple raters for the same essay. However, the data 
will violate both the assumption of unidimensionality 
and local independence, as the items and the students 
are clustered within the raters. The challenge is to account 
for these violations by modeling differences among raters 
in their rater characteristics. The so-called facet model 
(Linacre, 1989) has previously being used to address this 
challenge (e.g., Engelhard, 1994, 1996; Wilson & Wang, 
1995) and can be considered a common method to model 
students’ ratings. The facet model extends the standard IRT 
modeling approach by adding a fixed effect for the ‘rater 
severity’ to account for differences in rater characteristics. 
Rater severity refers to the tendency of a rater to assign 
lower scores to a given response as compared to other 
raters. That is, the rater severity parameter can be seen 
as the rater counterpart of the item difficulty parameter. 
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However, although the rater severity parameter accounts 
for differences across raters, it does not account for the 
dependency between ratings of the same responses. 
That is, all rater-item combinations are treated as locally 
independent. Neglecting the fact that only a subset of 
these data are locally independent indicators for the 
students’ proficiency has been shown to overestimate the 
reliability of the students’ assessment (see Mariano, 2002, 
and Wilson & Hoskens, 2001). 

As will be discussed below, effort has been devoted 
to develop suitable models that take both the common 
rater and the common item effects into account. Although 
valuable, these models quickly become numerically 
demanding if the number of items and number of subjects 
increases. Therefore, in this paper, we propose a new 
approach that takes the different dependencies in the data 
into account in a similar way as the existing models, but 
which can be estimated in a numerically less demanding 
way. The outline of this paper is as follows: Below we 
review the current modeling approach and discuss the 
numerical challenges that motivated the development 
of our model. Next, as our modeling approach builds 
upon these models, we start by formally presenting 
the hierarchical rater model by Patz et al. (2002), the 
hierarchical rater latent class model by DeCarlo et al. 
(2011), and the generalized rater model by Wang et al., 
(2014). Next, we derive our new model, the hierarchical 
rater thresholds model, and we present an application to 
real data from the Trends in International Mathematics 
and Science Study (TIMMSS) comprising ratings of 10 
items by 4 raters for 150 subjects. We end with a general 
discussion.

2  Current Models
As mentioned above, effort has been devoted to develop 
suitable models for local dependencies due to multiple 
ratings of the same responses. Among these approaches 
are the IRT model for multiple raters (Verhelst & Verstralen, 
2001), the rater bundle model (Wilson & Hoskens, 2001), 
the hierarchical rater model (Casabianca, Junker, & 
Patz, 2016; Patz, Junker, Johnson, & Mariano, 2002), the 
hierarchical rater latent class model (DeCarlo, Kim, & 
Johnson, 2011), and the generalized rater model (Wang, Su, 
& Qiu, 2014). The models are similar in that they account 
for the common rater effect by rater parameters similarly 
as in the facet model. The models differ however in the way 
that they account for the common item effect, see Table 
1. The rater bundle model is the most different from the 
other approaches. In this model, the common item effects 

are introduced by means of a fixed linear interaction term 
between pairs of raters of the same item. The interaction 
effect accounts for the degree to which two raters agree 
more than what would have been expected on the basis of 
the student proficiency and the raters’ severities. 

In the other models, the common item effect is modeled 
by introducing a separate latent variable for each item, 
denoted the ideal ratings. The most important difference 
between the models in Table 1 is that the hierarchical 
rater model and the hierarchical rater latent class model 
treat these ideal ratings as categorical variables (see also 
DeCarlo, 2005) while in the IRT model for multiple raters 
and the generalized raters model, the ideal ratings are 
continuous latent variables. Besides these differences, 
the models differ in the number of rater parameters. That 
is, all models, except the facet model and the IRT model 
for multiple raters, include an additional rater parameter 
besides the rater severity. The so-called rater variability 
parameter models the variability in the ratings by the 
raters. That is, some raters can be more variable in their 
ratings as compared to other raters. In these models, the 
rater severity and the rater variability can be either rater 
specific, or item and rater specific. In the hierarchical 
rater latent class model by DeCarlo et al. (2011) the rater 
parameters are specified in a somewhat different way with 
rater severities being item, rater, and response category 
depended, and the rater variability being rater and item 
depended. Note that DeCarlo et al. (2011) use respectively 
‘response criteria’ and ‘detection parameters’ to refer 

Table 1: Current modeling approaches to account for the common 
item effect in rating data.

Model Source Common item 
effect

Estimation

Facet model Linacre (1989) - CML, MML

Rater bundle 
model

Wilson & Hoskens 
(2001)

fixed MML

IRT model for 
multiple raters

Verhelst & 
Verstralen (2001)

random, 
continuous

-

Hierarchical rater 
model

Patz, et al. (2002) random, 
categorical

MCMC

Hierarchical latent 
class model

DeCarlo, Kim, & 
Johnson (2011)

random, 
categorical

MML, PME

Generalized rater 
model

Wang, Su, & Qiu 
(2014) 

random, 
continuous

MCMC

Note. CML: Conditional Maximum Likelihood; MML: Marginal 
Maximum Likelihood; MCMC: Markov Chain Monte Carlo; PME: 
Posterior Mode Estimation.
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to these parameters respectively. We will explicate this 
difference later in the formal model presentation.

2.1  Estimation Challenges

The models in Table 1 differ in the estimation procedures 
used to apply the models. That is, while the hierarchical 
rater model and the generalized rater model rely on 
Markov Chain Monte Carlo (MCMC) estimation, the 
hierarchical rater latent class model, the rater bundle 
model, and the facet model rely mainly on Marginal 
Maximum Likelihood (MML). Although certainly 
feasible, both MCMC and MML have their computational 
challenges with respect to models with a large number of 
latent variables. As all models but the rater bundle and 
the facet model include a separate latent variable for each 
item, the number of latent variables increases rapidly for 
an increasing number of items. In such high dimensional 
models, MCMC will become slow and MML may even 
become unfeasible (see e.g., Wood et al., 2002; although 
more efficient MML algorithms have been proposed by 
e.g., Cai, 2010b). In the case of the rater bundle model, 
as noted by Patz et al. and Wilson and Hoskens (2001), 
MML estimation becomes computationally infeasible for 
an increasing number of items and/or raters due to the 
rapid increase in the number of interaction terms that are 
needed. In addition, for the IRT model for multiple raters 
no estimation algorithm has been developed yet as the 
maximization of the marginal likelihood function is not 
easy as discussed in Verhelst and Verstralen (2001).

2.2  The Hierarchical Rater Thresholds Model

As discussed above, both MML and MCMC have their 
challenges when it comes to datasets with an increasing 
number of items. Therefore, if the number of items is 
large, a practical model is desirable that both accounts 
for the variability due to multiple raters and multiple 
items, but which can also be estimated in large datasets 
in a numerically efficient way. Therefore, in this paper, we 
present such an approach. We refer to this approach as 
‘The Hierarchical Rater Thresholds Model’ as the model is 
a hierarchical model and accounts for differences across 
raters by explicitly separating the raters’ effects from the 
item effects on the threshold parameters of the categorical 
observed variables. 

The hierarchical rater threshold model draws from 
the hierarchical rater model by Patz et al (2002), the 
hierarchical rater latent class model by DeCarlo et al., 

(2011), and the generalized rater model by Wang et 
al. (2014). In addition, it utilizes Thurstone’s model 
for categorical judgement (1928; see Torgerson, 1958) 
in the rater part of the model, and it includes the IRT 
model for multiple raters by Verhelst and Verstralen 
(2002) as a special case. The most important features 
of the hierarchical rater thresholds model are: 1) The 
model includes less latent variables as compared to the 
generalized rater model while still accounting for both 
variability due to difference in items and differences 
in raters; 2) The model is formulated in such a way that 
the parameters can be estimated using Weighted Least 
Squares (WLS; Muthén, 1984), an estimation procedure 
that is more robust to an increasing numbers of latent 
variables in terms of convergence and computation time 
as compared to MCMC and MML; and 3) Similarly to 
the generalized rater model by Wang et al. (2014), the 
proposed model is a generalized linear latent variable 
model (Bartholomew, Knott, & Moustaki, 2011; Moustaki 
& Knott, 2000; Skrondal, &  Rabe-Hesketh, 2004) which 
provides possibilities to fit the model in standard and 
flexible software packages like Mplus (Muthén & Muthén, 
2007), Lisrel (Jöreskog, & Sörbom , 2001), Amos (Arbuckle, 
1997), Mx (Neale, Boker, Xie, & Maes, 2006), SAS (SAS 
Institute, 2011), and OpenMX (Boker et al., 2010). 

3  Formal Models for Raters and 
Items

3.1  The Hierarchical Rater Model

Level 1. On the first level of the hierarchical rater model the 
observed ordinal rating, Xpir, of student p = 1, …, N on item 
i = 1,…,n by rater r = 1,…,R, are linked to the ordinal ideal 
ratings, ξpi, by a normal model, that is, the probability that 
Xpir equals c is given by
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logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   

 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 �

∑ exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (3) 

 

is then given by 

 

logit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝 ,𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�� = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 − 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 − 𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 

 

Xpir = c    if  τirc < ξpi < τir(c+1) for c = 0, …, C - 1    (5) 

 

 

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (6) 

 

 probit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐      (7) 

 

 

𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 + 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝         (8) 

 

  
(1)

where ∝ denotes ‘proportionally to’ and φir and ψir are 
respectively the item specific rater severity and rater scale 
parameters (or rater variability parameter ψ2

r).1 A lenient 

1  The original parameterization uses ψr to represent the rater specific 
variance, however, to enable a comparison to the hierarchical rater 
threshold model later, we use ψr as scale parameter with variability ψ2

r.
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rater who scores on average more towards the upper end 
of the scale – as compared to the other raters – will be 
characterized by a large positive φir. A severe rater who 
scores on average more in the lower end of the scale – as 
compared to the other raters – will be characterized by 
a large negative φir. In addition, a rater who shows more 
variability in the scores as compared to the other raters 
will be characterized by a larger ψir. Note that these rater 
effects may be item dependent, that is, a rater can be more 
lenient or variable on one item and less lenient or variable 
on another item.

Level 2. At the next level, the ordinal ideal ratings, ξpi, 
are linked to the continuous latent student proficiency 
variable, qp, using a (generalized) partial credit model, 
that is, the probability that ξpi equals k is given by

 

 𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∝ exp �−
�𝑐𝑐𝑐𝑐−�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖��

2

2𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
2 �  for c = 0, …, C - 1   (1) 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=𝑜𝑜𝑜𝑜 �

∑ exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (2) 

 

logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   

 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 �

∑ exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (3) 

 

is then given by 

 

logit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝 ,𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�� = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 − 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 − 𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 

 

Xpir = c    if  τirc < ξpi < τir(c+1) for c = 0, …, C - 1    (5) 

 

 

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (6) 

 

 probit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐      (7) 

 

 

𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 + 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝         (8) 

 

 

 𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∝ exp �−
�𝑐𝑐𝑐𝑐−�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖��

2

2𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
2 �  for c = 0, …, C - 1   (1) 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=𝑜𝑜𝑜𝑜 �

∑ exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (2) 

 

logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   

 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 �

∑ exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (3) 

 

is then given by 

 

logit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝 ,𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�� = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 − 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 − 𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 

 

Xpir = c    if  τirc < ξpi < τir(c+1) for c = 0, …, C - 1    (5) 

 

 

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (6) 

 

 probit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐      (7) 

 

 

𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 + 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝         (8) 

 

(2)

where ai is an item discrimination parameter, bi is the 
general difficulty of item i (some items are harder than 
other items) and γjk is the difficulty of category k with 
respect to this general difficulty level. At the top level of the 
model, a normal distribution function for qp is specified. 

The hierarchical rater model above is attractive 
as it accounts for both the variability in the data due to 
common raters and variability due to common items. In 
addition, parameters φir and ψir enable to quantify rater 
characteristics which might be helpful to assess rater 
reliability and to judge individual ratings by a given rater. 

3.2  The Hierarchical Rater Latent Class Model

Level 1. The hierarchical rater latent class model is a 
latent class version of the model above. That is, at level 
1, the observed data Xpir are connected to the categorical 
ideal ratings ξpi by using a graded response model for 
categorical latent variables:
 

 

 𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∝ exp �−
�𝑐𝑐𝑐𝑐−�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖��

2

2𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
2 �  for c = 0, …, C - 1   (1) 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=𝑜𝑜𝑜𝑜 �

∑ exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (2) 

 

logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   

 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 �

∑ exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (3) 

 

is then given by 

 

logit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝 ,𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�� = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 − 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 − 𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 

 

Xpir = c    if  τirc < ξpi < τir(c+1) for c = 0, …, C - 1    (5) 

 

 

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (6) 

 

 probit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐      (7) 

 

 

𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 + 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝         (8) 

 

Note that although DeCarlo et al. (2011) explicitly leave 
open the link function, here we focus on the logit link. In 
the model, λir is a rater discrimination parameter (referred 
to as ‘detection parameter’ by DeCarlo et al., 2011) which 
can be item specific, and τirc are item, rater, and response 
category specific threshold parameters (referred to as 
‘relative criteria’ by DeCarlo et al., 2011). Note that the 
model is general, containing many parameters, but both 

λir and τirc can be constraint to only contain rater, item, or 
category effects. 

Level 2. At level 2 of the hierarchical rater latent class 
model, a generalized partial credit model is specified 
similar as in Eq. 2 above, but with category specific 
difficulty parameters, βik, instead of a separate overall 
difficulty βi and a category parameter γik, that is:

 

 𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∝ exp �−
�𝑐𝑐𝑐𝑐−�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖��

2

2𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
2 �  for c = 0, …, C - 1   (1) 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=𝑜𝑜𝑜𝑜 �

∑ exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (2) 

 

logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   

 

 

𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=0 �

∑ exp �∑ 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
𝑖𝑖𝑖𝑖=0 �K−1

t=0
  for k = 0, …, K - 1   (3) 

 

is then given by 

 

logit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝 ,𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝�� = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 − 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝 − 𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 − 𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜔𝜔𝜔𝜔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝    (4) 

 

Xpir = c    if  τirc < ξpi < τir(c+1) for c = 0, …, C - 1    (5) 

 

 

𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐 = 𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝          (6) 

 

 probit�𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�� = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐      (7) 

 

 

𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝 + 𝜀𝜀𝜀𝜀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝         (8) 

 

(3)

3.3  The Generalized Rater Model

Both hierarchical rater models above are based on two 
categorizations, one on the rater level and one on the 
observed variable level. This complicates model estimation 
as each category on each level of the model is associated 
with separate parameters. An important feature of the 
generalized rater model by Wang et al. (2014) is that it 
assumes the ideal scores, ξpi, to be continuous variables 
with a normal distribution. Due to this assumption, the 
model becomes numerically less complex as there are less 
parameters involved at the latent level (i.e., in the model 
by Wang, the distribution of latent variable ξpi can be 
characterized by a mean and variance parameter, while 
in the hierarchical rater model separate parameters for 
all K - 1 latent categories need to be estimated). Besides 
these continuous latent ideal score variables, the model 
includes a separate normally distributed latent variable 
ωpr for each rater with its the mean equal to the item-
invariant rater severity, μω=φr, and the variance equal to 
the item-invariant rater specific variability, σ2

ω=ψ2
r. The 

resulting model is then given by

 

 𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝� ∝ exp �−
�𝑐𝑐𝑐𝑐−�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝+𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖��
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𝑃𝑃𝑃𝑃�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑘𝑘𝑘𝑘�𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝� = exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘
𝑖𝑖𝑖𝑖=𝑜𝑜𝑜𝑜 �

∑ exp �∑ �𝛼𝛼𝛼𝛼𝑝𝑝𝑝𝑝𝜃𝜃𝜃𝜃𝑝𝑝𝑝𝑝−𝛽𝛽𝛽𝛽𝑝𝑝𝑝𝑝�−𝛾𝛾𝛾𝛾𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡
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t=0
  for k = 0, …, K - 1   (2) 

 

logit[𝑃𝑃𝑃𝑃�𝑋𝑋𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ≥ 𝑐𝑐𝑐𝑐�𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�] = 𝜆𝜆𝜆𝜆𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝜉𝜉𝜉𝜉𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜏𝜏𝜏𝜏𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑐𝑐𝑐𝑐   
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(4)

where all other parameters have similar interpretations 
as in the above. Note that the model does not include 
the hierarchical structure that is characteristic of the 
hierarchical rater model because there are no higher-
order random person effects that are nested in lower-order 
random person effects. However, the model does account 
for the local dependencies in the data with ξpi accounting 
for the dependencies due to the raters rating the same 
items, and ωpr accounting for the dependencies due to the 
items being rated by the same raters.
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4  The Hierarchical Rater Thresholds 
Model
The model we propose in this paper, the hierarchical rater 
thresholds model, has a hierarchical structure similar 
to the hierarchical rater model by Patz et al. (2002) and 
DeCarlo et al. (2011). In addition, the rater thresholds 
model assumes continuous ideal scores ξpi similarly as in 
the generalized rater model by Wang et al. (2014). However, 
here, we will treat the observed ratings as if they arose 
from the categorization of the ideal ratings at increasing 
thresholds. This idea is motivated by Thurstone’s model 
for categorical judgement (1928; see Torgerson, 1958). The 
resulting models are all special cases in the item factor 
analysis framework (Wirth & Edwards, 2007) and can 
therefore be applied using WLS estimation. See Figure 
1 for a graphical representation of the hierarchical rater 
threshold model. Below we describe the model.

4.1  Level 1: Thurstone’s model for categori-
cal judgement

Thurstone’s model for categorical judgement postulates 
that categorical judgements in Xpir arise by categorization 
of an underlying normally distributed continuum at 
increasing thresholds. Here, we use this idea by assuming 
that the ideal scores ξpi represent the continuous score 

that item i by student p should have obtained in the 
case that an unambiguous and objective continuous 
scoring rule was available. These continuous scores ξpi 
are then internally categorized by the raters at rater and 
item specific thresholds. Thus, the model postulates that 
observed ratings of the same item by the same student 
may differ depending on the rater as raters differ in the 
thresholds they use to categorize the continuous ideal 
scores ξpi, that is

Xpir = c     if  τirc < ξpi < τir(c+1)    for c = 0, …, C - 1 (5)

where τirc denotes the c-th threshold of rater r on item i 
with τi0r = -∞ and τiCr = ∞. Note that the thresholds do 
not depend on the student p as we assume, as explicitly 
discussed in Verhest and Verstralen (2001), that the raters 
solely base their assessment of item i by student p on the 
quality of the response and not on other indications for 
that specific student proficiency (as might for instance 
happen when the raters are also the students’ teachers 
such that they have an a priori expectation about the 
students proficiency). 

The thresholds in Eq. 5 do not yet include separate 
item and rater parameters. That is, irrespective of the 
rater, on some items it may be harder to obtain a high 
rating because the item is more difficult. In addition, 
irrespective of the item, it may be harder to obtain a 
higher rating for some raters because these raters are less 

Figure 1: A graphical representation of the hierarchical rater thresholds model.
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lenient. Therefore, we separate item and rater effects on 
the thresholds by using
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where βic is the difficulty for the c-th category of item i, 
and φir and ψir are the item specific rater severity and 
rater scale parameter (or rater variability ψ2

r) similarly 
to the hierarchical rater model in Eq. 1. For reasons of 
identification, φir and ψir should be fixed to 0 and 1 for all 
items for an arbitrarily chosen rater to provide a reference 
point. Note that φir and ψir are identified as they account 
for item and rater specific departures from the main item 
effect in βic. Parameters φir and ψir can be tested to be item-
invariant, that is, φir =φr and ψir = ψr. However, these items 
cannot be specified as rater-invariant as 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

− 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖   will 
result in an unidentified model as parameters φi and ψi can 
be absorbed in βic. Therefore, in the model specification in 
Eq. 6, φir and ψir can truly be seen as rater parameters and 
not as item parameters. In addition, βic can truly be seen as 
item parameters and as not rater parameters.

The way we apply Thurstone’s model here is different 
from the so-called underlying variable approach that is 
applied in item factor analysis and item response theory 
(Wirth & Edwards, 2007; Takane & De Leeuw, 1987; 
Samejima, 1969). Specifically, in the underlying variable 
approach, a separate variable is assumed to underlie 
each Xpir while, here, we assume a common underlying 
variable for all r (i.e., ξpi). Differences in Xpir across raters 
arise due to the differences in the thresholds and not due 
to differences in the underlying variable. 

As the ideal scores are assumed to be normal, 
applying the categorization scheme in Eq. 5 results in the 
following model for the probability of a score in category 
c or higher 
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with the thresholds τirc given by Eq. 6 and with λir being 
an item specific rater discrimination parameter. Note 
that in this model, the thresholds (and thus φir and ψir) 
are on a probit scale. The item specific discrimination 
parameter can be identified by fixing λir = 1 for all items 
(i) of an arbitrary rater (τ), or by fixing σ2

ξi = 1 for all items 
(i). Parameter λir can be constraint to only reflect a rater 
effect (λir = λr), an item effect (λir = λi), or a common effect 
(λir = λ) which is equivalent to omitting λir from Eq. 7 (as 
the common effect λ can be absorbed in σ2

ξi). All these 
extension can be combined with item specific or item 
invariant rater parameters for τirc in Eq. 6. We illustrate 
this in the real data application. A final note is that the 

model above is an equivalent to a graded response model 
(Samejima, 1969) with linear constraints on the item 
category parameter. In addition, for C = 2, φir = φr, and 
ψir = 1, the model simplifies to the model by Verhelst and 
Verstralen (2001).

4.2  Level 2: A linear latent variable model

Now that the ideal ratings, ξpi in Eq. 5 are defined and 
linked to the observed data, they can be submitted to an 
appropriate measurement model. Here we use the linear 
common factor model as proposed by Mellenbergh (1994) 
for continuous item scores, that is, 
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(8)

where αi is the item discrimination parameter and εpi is the 
first-order item specific residual with variance σ2

εi. Note 
that the regression does not include an intercept as this 
parameter is not identified in single group applications. 
To finalize the model specification, at the top of the 
model we assume – similarly as in the hierarchical model 
– that the student proficiency parameter is (standard) 
normally distributed. For reasons of identification, 
VAR(θp) should be fixed to 1 or αi should be fixed to 1 for 
an arbitrary item. 

4.3  Estimation of the Hierarchical Rater 
Thresholds Model

The full hierarchical rater thresholds model is given 
by Eq. 6, Eq. 7, and Eq. 8 with a normal distribution for 
qp. It is a hierarchical model with first-order factors, 
ξpi, second-order factor qp and constraints on the item 
category parameters. As all relations in this full model 
are generalized linear, the model is a member of the 
generalized linear latent variable modeling framework 
(Bartholomew, Knott, & Moustaki, 2011; Moustaki & 
Knott, 2000; Skrondal, &  Rabe-Hesketh, 2004). An 
appealing property of the hierarchical rater thresholds 
model being a generalized linear latent variable model is 
that we can estimate the parameters by WLS estimation 
(see Muthén, 1984). As discussed above, WLS is a suitable 
and numerically less demanding estimation procedure in 
the case of an increasing number of latent variables. As in 
typical models for raters, the number of random effects 
increases rapidly if the number of items increases. In WLS, 
the following fitting function is minimized over σ, the 
vector of model implied polychoric means and correlations 
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(which are a function of the free model parameters in Eq. 
6, Eq. 7, and Eq. 8): 

𝐹𝐹𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈)𝑇𝑇𝑇𝑇𝑾𝑾𝑾𝑾−1(𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈) 

 

𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝1  

and 

𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝1. 

 

where s is a vector of the estimated polychoric means and 
correlations of the observed data and W is the covariance 
matrix of these estimates, V. Matrix W can become large 
for an increasing number of observed variables. As W has 
to be inverted during estimation, the true benefits of WLS 
are obtained if W is taken to be the diagonal of V (see e.g., 
Li, 2016; Flora, & Curran, 2004). In that case, the standard 
errors of the model parameters and the χ2 goodness-of-fit 
statistic need to be corrected for the loss of information 
due to the neglect of the off-diagonal elements of V during 
estimation (see Muthén, du Toit, & Spisic, 1997).

As in WLS, expectations are taken over the latent 
variables ξpi and θp in vector in σ, these latent variables 
do not have to be estimated (as in MCMC) or marginalized 
out (as in MML). The estimation procedure is therefore 
numerically less demanding, even if there are many latent 
ξpi variables (see Muthén, Muthén & Asparouhov, 2005). 
In a simulation study, Beauducel and Herzberg (2006) 
showed that a sample size of 250 subjects is enough to fit 
models up to 8 latent variables and 40 ordinal variables 
with 2, 3, 4, 5, or 6 point scales. To compare: Wood et 
al (2002) discuss that more than 5 latent variables is 
already infeasible for MML (i.e., MML using conventional 
Gauss-Hermite quadrature approximation; the maximum 
number of latent variables can be increased by using more 
efficient approximations as proposed by e.g., Cai, 2010b, 
but still the estimation can quickly become –at least 
practically – infeasible).

5  Application

5.1  Data

In this section, we apply the hierarchical rater thresholds 
model from Eq. 6, Eq. 7, and Eq. 8 to a real data set 
pertaining mathematics ability. Specifically, the data were 
collected within the Trends in International Mathematics 
and Science Study (TIMMSS) in 2007 in Turkey. The data 
comprise ratings from four raters of 10 items by 150 8th 
grade students. The raters are all middle school teachers. 
The items were rated on a 6-point scale. The data were 
collected in a fully crossed design with all students 
responding to all items which in turn were rated by all 
teachers. 

Although the data come from a large-scale 
international assessment, the size of the dataset is 
admittedly not extremely large (10 items, 4 raters, and 
150 subjects). However, we note that the dataset is large 
enough to demonstrate the value of our approach. That 
is, in the present dataset MML based approaches are 
already (practically) infeasible as the model contains 10 
latent variables for the common item effects. In addition, 
as described below, estimation time for the hierarchical 
rater model by MCMC is already five times longer than the 
estimation time of our WLS based approach. 

5.2  Models

To the data, we fit various versions of the hierarchical 
rater threshold model with different structures for τirc 
and λir in Eq. 6. In addition, for a comparison, we fit two 
rater thresholds models that are based on the facet model 
in which we omit the common item effects, ξpi, from the 
model similarly as in the original facet model by Linacre 
(1989). That is, we consider a model without ξpi but with 
item specific rater parameters, φir and ψir, and a model 
without ξpi but with item invariant rater thresholds, φr 
and ψr. Finally, we also consider (different versions of) 
the hierarchical rater latent class model by DeCarlo (2005) 
and the hierarchical rater model by Patz et al. (2002).

5.3  Estimation

The hierarchical rater threshold models (including the 
facet model version) are fit in Mplus (Muthén & Muthén, 
2007) using WLS estimation with a diagonal weight matrix 
W (also referred to as “diagonally weighted least squares”) 
and a correction on the standard errors and the χ2 goodness 
of fit statistic (Muthén et al., 1997). The script to fit the full 
model in the case of 4 raters and 10 items is available in 
the Supplementary Materials. As changing this script to 
a desired number of items or raters can be cumbersome, 
we wrote an R-script that can be used to generate Mplus-
scripts for any number of items and any number of raters, 
and for all special cases of the model as discussed in this 
paper. The R-script is available on MASKED. 

To assess model fit we use the Root Mean Square 
Error of Approximation (RMSEA; Browne & Cudeck, 
1993), the Comparative Fit Index (CFI; Bentler & Bonett, 
1980) and the Tucker-Lewis Index (TLI; Bentler & Bonett, 
1980). According to the guidelines by Schermelleh-Engel, 
Moosbrugger, and Müller (2003), the RMSEA indicates 
an acceptable fit for values between 0.08 and 0.05, and a 
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good fit for values smaller than 0.05. For the CFI and TLI 
values between 0.95 and 0. 97 indicate acceptable model 
fit, and values above 0.97 indicate good model fit.

The hierarchical rater model by Patz et al. (2002) is 
estimated using MCMC estimation in the Immer R-package 
(Robitzsch & Steinfeld, 2018a; see also Robitzsch & 
Steinfeld, 2018b; we used 5000 iterations with 1000 
burnin). In addition, the hierarchical rater model by 
DeCarlo (2005) is estimated using maximum likelihood in 
the R-package Sirt (Robitzsch, 2020; see also Robitzsch & 
Steinfeld, 2018b). Model fit for the latter model is assessed 
using the AIC, BIC, CAIC, and AICc fit indices.

6  Results

6.1  Estimation time

To illustrate the efficiency of the present model, we first 
compared estimation time between the full hierarchical 
rater thresholds model estimated using WLS and 
the hierarchical rater model estimated using MCMC 
estimation as discussed above. The rater threshold model 
took 55 seconds to estimate on an average laptop, while 
the hierarchical model took 4 minutes and 38 seconds.2 
Of course, the estimation time of the hierarchical rater 
model depends on the number of iterations, but we think 
it does illustrate the difference between both estimation 
approaches. 

6.2  Modeling results: Rater threshold models

The model fit results concerning the rater threshold models 
are in presented in Table 2. As can be seen, all hierarchical 
rater thresholds models have an acceptable fit according 
to the RMSEA with values between 0.058 and 0.79. 
According to the CFI and TLI, all rater thresholds models 
fit well with values close to 0.98/0.99. On the contrary, the 
facet version of the rater threshold model fits poorly. The 
facet model with item specific rater parameters has a CFI 
value of 0.911, a TLI value of 0.916, and a RMSEA value of 
0.178. The item invariant model also fits poorly with a CFI 
value of 0.908, a TLI value of 0.919, and a RMSEA value of 
0.175.

Parameter estimates for the rater parameters, φir and 
ψir in the different rater threshold models are in Table 4, 5, 

2  Configuration of the ‘average laptop’ is: Intel Core i5 CPU (2.30 
Ghz) with 8Gb RAM memory 

and 6 for Models 1a to 2d from Table 2. Note that Models 3a 
to 3d do not have separate rater parameters (i.e., φir = φ = 0 
and ψir = ψ = 1 for identification reasons in these models). 
As can be seen from Table 4 and 5, estimates for φir and 
ψir hardly differ across Models 1a to 1d. That is, the exact 
configuration of λir does not importantly affect the rater 
severity and variability estimates, at least for this dataset. 
However, it can be seen that within a rater, φir and ψir 
differ across items. For instance, in Table 4 it can be seen 
that the estimated severity of rater 2 equals -0.445 (SE: 
0.234) on item 5 and 0.535 (SE: 0.079) on item 8. Similar 
differences are notable for ψri in Table 5

Thus, the rater threshold model clearly outperforms 
the facet model, which was to be expected as the facet 
model does not take the common item effects into account. 
However, for the different rater threshold models, it is 
more difficult to select to best fitting model as all fit indices 
(especially the TLI and CFI) are very close. Therefore, the 
question arises which model to choose. As can be seen in 
Table 2, have restrictions on φir and ψir generally decreases 
model fit. That is, all models with restrictions on φir and 
ψir fit less well as compared to their corresponding model 
without restrictions on φir and ψir. With respect to the 
restrictions on λir is can be seen that have item specific (λi) 
or rater specific (λr) parameters generally decreases model 
fit as compared to an unrestricted λir. However, having a 
common parameter, λir = λ is associated with the best fit. 
Thus statistically, one would choose the model with an 
unrestricted φir and ψir and a common parameter for λ as 
this model is –at least statistically – the best fitting model. 
However, as the model fit is close, in practice one would 
want to take practical and substantive considerations into 
account as well. In addition, one should keep in mind 
that the fit measures that we used (CFI, TLI, and RMSEA) 
tell something about the model implied polychoric 
correlations. For instance, a difference in RMSEA of 0.002 
between Model A and B indicates that Model B is better in 
describing the polychoric correlation matrix than Model 
A. Thus in practice, if models have similar RMSEA values, 
the question is if these differences (i.e., differences in how 
well the polychoric correlation matrix is described) are 
important for the research goal at hand.

6.3  Modeling results: Hierarchical latent 
class models

See Table 3 for the model fit of different hierarchical 
latent class models according to the AIC, BIC, CAIC, and 
AICc. As can be seen, the fit indices are slightly mixed 
with respect to the model that is indicated as the best 
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fitting model. That is, the AIC prefers the model with τirc 

= τic and λir = λir while the AICc prefers the model with τirc 

= τrc and λir = λ. The BIC and CAIC both agree in that the 
model with τirc = τrc and λir = λir is the best fitting model. 
Therefore, we accept this model as the final hierarchical 
latent class model.

6.4  Modeling results: Comparison

A direct comparison between the rater threshold model 
and the hierarchical rater latent class model is not possible 
as estimation of the former is not based on a likelihood 
function. As a result, for the rater threshold model, no 

Table 2: Model fit results for the hierarchical rater threshold models in the application.

Model τirc λir #par χ2 df CFI TLI RMSEA

1a

TABLE 2 

1a 
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 1b 
1c  
1d  
2a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 2b 
2c  
2d  
3a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 3b 
3c  
3d  

e. 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 is no 

 

 

λir = λir 160 1262.5 820 0.990 0.990 0.060

1b λir = λi 130 1402.0 850 0.987 0.989 0.066

1c λir = λr 133 1357.9 847 0.988 0.989 0.063

1d λir = λ 121 1285.5 859 0.990 0.991 0.058

2a

TABLE 2 

1a 
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 1b 
1c  
1d  
2a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 2b 
2c  
2d  
3a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 3b 
3c  
3d  

e. 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 is no 

 

 

λir = λir 106 1405.0 874 0.988 0.989 0.064

2b λir = λi 76 1541.7 904 0.986 0.988 0.069

2c λir = λr 79 1498.4 901 0.986 0.988 0.066

2d λir = λ 67 1405.6 913 0.989 0.990 0.060

3a

TABLE 2 

1a 
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 1b 
1c  
1d  
2a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 2b 
2c  
2d  
3a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 3b 
3c  
3d  

e. 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 is no 

 

 

λir = λir 100 1622.1 880 0.983 0.985 0.075

3b λir = λi 70 1751.9 910 0.981 0.984 0.079

3c λir = λr 73 1711.0 907 0.982 0.984 0.077

3d λir = λ 61 1559.3 919 0.985 0.988 0.068

Note. 

TABLE 2 

1a 
𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 1b 
1c  
1d  
2a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 2b 
2c  
2d  
3a 

𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 3b 
3c  
3d  

e. 𝜏𝜏𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝜑𝜑𝜑𝜑𝑖𝑖𝑖𝑖
𝜓𝜓𝜓𝜓𝑖𝑖𝑖𝑖

 is no 

 

 

 is not considered as it is not identified (see main text). In addition, ‘#par’ denotes: number of parameters in the model. 

Table 3: Model fit results for the hierarchical rater latent class models in the application.

τirc λirc #par AIC BIC CAIC AICc

τirc = τic λir = λir 150 10833 11285 11435 *

λir = λi 120 12033 12394 12514 13034

λir = λr 114 10951 11294 11408 11700

λir = λ 111 12036 12370 12481 12690

τirc = τrc λir = λir 120 10705 11066 11186 11706

λir = λi 90 10891 11162 11252 11169

λir = λr 84 10924 11177 11261 11144

λir = λ 81 10942 11186 11267 11138

τirc = τc λir = λir 105 10914 11230 11335 11420

λir = λi 75 12085 12311 12386 12239

λir = λr 69 11123 11331 11400 11244

λir = λ 66 12167 12365 12431 12273

Note. Best values of the fit indices are in bold face.  
*: as the number of parameters equals the sample size, the AICc cannot be calculated for this model
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Table 4: Parameter estimates (standard errors) for the rater severity, φri across Model 1a to Model 1d and the hierarchical rater model (HRM).

Rater Threshold Model HRM
r i Model 1a Model 1b Model 1c Model 1d

1 1 0* 0* 0* 0* -0.708 (0.074)

1 2 0* 0* 0* 0* -0.720 (0.115)

1 3 0* 0* 0* 0* -0.635 (0.129)

1 4 0* 0* 0* 0* -0.972 (0.159)

1 5 0* 0* 0* 0* 0.467 (0.126)

1 6 0* 0* 0* 0* -0.753 (0.102)

1 7 0* 0* 0* 0* -1.159 (0.122)

1 8 0* 0* 0* 0* -0.932 (0.131)

1 9 0* 0* 0* 0* -0.368 (0.125)

1 10 0* 0* 0* 0* -0.285 (0.139)

2 1  0.544 (0.056) 0.544 (0.056) 0.544 (0.056) 0.544 (0.056) 0.425 (0.094)

2 2  0.160 (0.074) 0.160 (0.074) 0.160 (0.074) 0.160 (0.074) -0.181 (0.141)

2 3  0.524 (0.079) 0.524 (0.079) 0.524 (0.079) 0.524 (0.079) 0.571 (0.13)

2 4  0.400 (0.062) 0.400 (0.062) 0.400 (0.062) 0.400 (0.062) 0.307 (0.174)

2 5 -0.445 (0.234) -0.445 (0.234) -0.445 (0.234) -0.445 (0.234) 0.119 (0.094)

2 6  0.586 (0.079) 0.586 (0.079) 0.586 (0.079) 0.586 (0.079) 0.438 (0.134)

2 7  0.494 (0.058) 0.494 (0.058) 0.494 (0.058) 0.494 (0.058) 0.159 (0.134)

2 8  0.535 (0.079) 0.535 (0.079) 0.535 (0.079) 0.535 (0.079) 0.238 (0.137)

2 9  0.247 (0.058) 0.247 (0.058) 0.247 (0.058) 0.247 (0.058) 0.188 (0.099)

2 10  0.447 (0.062) 0.447 (0.062) 0.447 (0.062) 0.447 (0.062) 0.731 (0.135)

3 1  0.526 (0.062) 0.526 (0.062) 0.526 (0.062) 0.526 (0.062) 0.755 (0.171)

3 2  0.263 (0.078) 0.263 (0.078) 0.263 (0.078) 0.263 (0.078) 0.117 (0.150)

3 3  0.408 (0.070) 0.408 (0.070) 0.408 (0.070) 0.408 (0.070) 0.397 (0.152)

3 4  0.426 (0.065) 0.426 (0.065) 0.426 (0.065) 0.426 (0.065) 0.531 (0.192)

3 5  0.220 (0.140) 0.220 (0.140) 0.220 (0.140) 0.220 (0.140) 0.445 (0.133)

3 6  0.735 (0.085) 0.735 (0.085) 0.735 (0.085) 0.735 (0.085) 1.002 (0.148)

3 7  0.557 (0.067) 0.557 (0.067) 0.557 (0.067) 0.557 (0.067) 0.357 (0.099)

3 8  0.641 (0.088) 0.641 (0.088) 0.641 (0.088) 0.641 (0.088) 0.611 (0.178)

3 9  0.295 (0.055) 0.295 (0.055) 0.295 (0.055) 0.295 (0.055) 0.403 (0.106)

3 10  0.625 (0.080) 0.625 (0.080) 0.625 (0.080) 0.625 (0.080) 1.483 (0.178)

4 1  0.435 (0.049) 0.435 (0.049) 0.435 (0.049) 0.435 (0.049) 0.112 (0.081)

4 2  0.203 (0.062) 0.203 (0.062) 0.203 (0.062) 0.203 (0.062) 0.158 (0.112)

4 3  0.491 (0.085) 0.491 (0.085) 0.491 (0.085) 0.491 (0.085) 0.158 (0.083)

4 4  0.419 (0.060) 0.419 (0.060) 0.419 (0.060) 0.419 (0.060) 0.371 (0.188)

4 5  0.235 (0.146) 0.235 (0.146) 0.235 (0.146) 0.235 (0.146) 0.23 (0.086)

4 6  0.632 (0.082) 0.632 (0.082) 0.632 (0.082) 0.632 (0.082) 0.629 (0.147)

4 7  0.317 (0.056) 0.317 (0.056) 0.317 (0.056) 0.317 (0.056) -0.167 (0.146)
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Rater Threshold Model HRM
r i Model 1a Model 1b Model 1c Model 1d

4 8  0.516 (0.081) 0.516 (0.081) 0.516 (0.081) 0.516 (0.081) 0.244 (0.127)

4 9  0.267 (0.057) 0.267 (0.057) 0.267 (0.057) 0.267 (0.057) 0.201 (0.09)

4 10  0.347 (0.068) 0.347 (0.068) 0.347 (0.068) 0.347 (0.068) 0.254 (0.105)

*: This parameter is fixed for identification purposes.

ContinuedTable 4: Parameter estimates (standard errors) for the rater severity, φri across Model 1a to Model 1d and the hierarchical rater model 
(HRM).

Table 5: Parameter estimates (standard errors) for the rater scale, ψri across Model 1a to Model 1d and the hierarchical rater model (HRM).

Rater Threshold Model HRM

r i Model 1a Model 1b Model 1c Model 1d

1 1 1* 1* 1* 1* 0.747 (0.061)

1 2 1* 1* 1* 1* 0.802 (0.081)

1 3 1* 1* 1* 1* 1.139 (0.092)

1 4 1* 1* 1* 1* 1.376 (0.120)

1 5 1* 1* 1* 1* 0.841 (0.065)

1 6 1* 1* 1* 1* 0.945 (0.081)

1 7 1* 1* 1* 1* 1.057 (0.104)

1 8 1* 1* 1* 1* 1.145 (0.093)

1 9 1* 1* 1* 1* 1.090 (0.087)

1 10 1* 1* 1* 1* 1.196 (0.095)

2 1  1.061 (0.106)  1.061 (0.106)  1.061 (0.106)  1.061 (0.106) 0.668 (0.057)

2 2  1.047 (0.157)  1.047 (0.157)  1.047 (0.157)  1.047 (0.157) 1.043 (0.093)

2 3  2.991 (0.568)  2.991 (0.568)  2.991 (0.568)  2.991 (0.568) 0.895 (0.065)

2 4  1.279 (0.192)  1.279 (0.192)  1.279 (0.192)  1.279 (0.192) 1.012 (0.099)

2 5  0.659 (0.115)  0.659 (0.115)  0.659 (0.115)  0.659 (0.115) 0.633 (0.051)

2 6  2.620 (0.481)  2.620 (0.481)  2.621 (0.481)  2.620 (0.481) 0.813 (0.087)

2 7  1.586 (0.184)  1.586 (0.184)  1.586 (0.184)  1.586 (0.184) 0.696 (0.110)

2 8  2.890 (0.514)  2.890 (0.514)  2.890 (0.514)  2.890 (0.514) 0.711 (0.089)

2 9  1.480 (0.198)  1.480 (0.198)  1.480 (0.198)  1.480 (0.198) 0.786 (0.091)

2 10  1.926 (0.253)  1.926 (0.253)  1.926 (0.253)  1.926 (0.253) 0.950 (0.080)

3 1  1.172 (0.105)  1.172 (0.105)  1.172 (0.105)  1.172 (0.105) 1.268 (0.100)

3 2  1.042 (0.161)  1.042 (0.161)  1.042 (0.161)  1.042 (0.161) 1.295 (0.098)

3 3  2.197 (0.344)  2.197 (0.344)  2.197 (0.344)  2.197 (0.344) 1.132 (0.080)

3 4  1.614 (0.260)  1.614 (0.260)  1.614 (0.260)  1.614 (0.260) 1.192 (0.134)

3 5  1.357 (0.297)  1.357 (0.297)  1.357 (0.297)  1.357 (0.297) 0.777 (0.075)

3 6  2.739 (0.541)  2.739 (0.541)  2.739 (0.541)  2.739 (0.541) 0.853 (0.068)
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likelihood based model fit statistics can be calculated. 
However, an indirect comparison is possible as the best 
fitting models can be compared in terms of the effects 
that are included. That is, the final rater threshold model 
was argued to be the model with item and rater specific 
severity and scale parameters φir and ψir and with rater 
and item invariant parameter λ. For the hierarchical rater 
latent class model, the final model includes τirc = τrc and  
λir = λir. Both models thus agree on rater and item specific 
effects, however, in the latent class model, the rater effects 
are modeled in the thresholds, while the items effects are 
modeled in the rater discrimination parameter λir. This is 
in accordance with how DeCarlo et al. (2011) proposed the 
compare the hierarchical rater latent class model to the 
hierarchical rater model by Patz et al. (2002). That is, De 
Carlo et al compare τirc and λir from the hierarchical latent 
class model to respectively φr and ψr from the hierarchical 
rater model. 

A comparison in terms of parameter estimates between 
the rater threshold model and the hierarchical rater latent 
class model is challenging as the threshold parameters 
τirc are restricted in a different way (but see DeCarlo et al., 
2011 for a possible graphical approach). Here, we focus 
on a comparison between the rater threshold model and 
the hierarchical rater model by Patz et al. (2002) as both 

models include comparable rater severity and rater scale 
parameters φir and ψir. See below.

6.5  Modeling results: Hierarchical rater 
models

Parameter estimates for the rater parameters, φir and 
ψir from the hierarchical rater model are in Table 4 and 
5. Table 6 contains the rater parameters in a model with 
item invariant rater parameter φr and ψr. Note that in the 
original hierarchical rater model by Patz et al (2002), ψ2

ir is 
estimated, but here we focus on ψir to facilitate comparison 
to the rater threshold models. 

6.6  Modeling results: Comparison

In comparing the rater parameters φir and ψir between the 
hierarchical rater model and the rater threshold model a 
transformation of the hierarchical rater model parameters 
is necessary. That is, in the rater threshold model, the 
rater parameters reflect the differences among the raters 
relative to rater 1, as for this rater, φi1 = 0 and ψi1 = 0 for 
identification reasons. Therefore, the comparison between 

Rater Threshold Model HRM

r i Model 1a Model 1b Model 1c Model 1d

3 7  2.122 (0.316)  2.122 (0.316)  2.122 (0.316)  2.122 (0.316) 0.543 (0.109)

3 8  3.954 (0.870)  3.954 (0.870)  3.954 (0.870)  3.954 (0.870) 0.759 (0.111)

3 9  1.310 (0.171)  1.310 (0.171)  1.310 (0.171)  1.310 (0.171) 0.862 (0.069)

3 10  2.902 (0.472)  2.902 (0.472)  2.902 (0.472)  2.902 (0.472) 1.264 (0.098)

4 1  0.973 (0.086)  0.973 (0.086)  0.973 (0.086)  0.973 (0.086) 0.502 (0.046)

4 2  1.207 (0.159)  1.207 (0.159)  1.207 (0.159)  1.207 (0.159) 0.846 (0.140)

4 3  4.019 (0.803)  4.019 (0.803)  4.019 (0.803)  4.019 (0.803) 0.562 (0.051)

4 4  1.585 (0.244)  1.585 (0.244)  1.585 (0.244)  1.585 (0.244) 0.938 (0.150)

4 5  1.357 (0.291)  1.357 (0.291)  1.357 (0.290)  1.357 (0.291) 0.498 (0.052)

4 6  2.705 (0.491)  2.705 (0.491)  2.705 (0.491)  2.705 (0.491) 0.856 (0.084)

4 7  1.686 (0.172)  1.686 (0.172)  1.686 (0.172)  1.686 (0.172) 1.118 (0.104)

4 8  3.289 (0.608)  3.289 (0.608)  3.289 (0.608)  3.289 (0.608) 0.831 (0.118)

4 9  1.677 (0.240)  1.677 (0.240)  1.677 (0.240)  1.677 (0.240) 0.700 (0.105)

4 10  2.340 (0.310)  2.340 (0.310)  2.340 (0.310)  2.340 (0.310) 0.389 (0.086)

*: This parameter is fixed for identification purposes.

ContinuedTable 5: Parameter estimates (standard errors) for the rater scale, ψri across Model 1a to Model 1d and the hierarchical rater model 
(HRM).
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the rater parameters in Table 4, 5, and 6 should be based 
on the ordering of the raters. That is, in Table 5 it can be 
seen that for rater severity, φr, the hierarchical rater model 
and the rater threshold model result in the same ordering 
of the raters (i.e., from least to most severe: 1,2,4,3). For 
the rater scale parameter however, the models differ in 
their implied ordering. That is, for the rater threshold 
model the ordering from smallest scale to widest scale is: 
1, 2, 4, and 3, while the ordering for the hierarchical rater 
model is: 4, 2, 1, and 3. 

To look more into the relation between the rater 
parameters from the two models, we transform the 
hierarchical rater model parameters to reflect rater 
severity and scale relative to the first rater, that is:

 

𝐹𝐹𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈)𝑇𝑇𝑇𝑇𝑾𝑾𝑾𝑾−1(𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈) 

 

𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝1  

and 

𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝1. 

 

and

 

𝐹𝐹𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = (𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈)𝑇𝑇𝑇𝑇𝑾𝑾𝑾𝑾−1(𝒔𝒔𝒔𝒔 − 𝝈𝝈𝝈𝝈) 

 

𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝜑𝜑𝜑𝜑𝑝𝑝𝑝𝑝1  

and 

𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝′ = 𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝/𝜓𝜓𝜓𝜓𝑝𝑝𝑝𝑝1. 

 

.

Next, for raters 2, 3, and 4, we correlate these transformed 
parameters from the hierarchical rater model to the 
parameter from the rater threshold model. In addition, we 
consider the observed marginal means (Mir = MEANp(Xpir)) 
and standard deviations (Sir = SDp (Xpir)) of the rater’s 
item ratings. Similar to above, we also transformed these 
statistics into a measure relative to rater 1 (M‘

ir and S‘
ir). 

Table 7 depicts the correlations between the relative 
hierarchical rater parameters, the relative rater statistics, 
and the rater parameters from the rater threshold model. 
As can be seen, the correlations between M‘

ir and φ‘
HRM 

are generally large for all three raters (around 0.970). The 

Table 6: Parameter estimates (standard errors) for the rater severity, φr, and the rater scale, ψr for Model 2a to Model 2d and the hierarchical 
rater model (HRM).

Rater Threshold Model HRM

Parameter r Model 2a Model 2b Model 2c Model 2d

φr 1 0* 0* 0* 0* -0.594 (0.035)

2 0.485 (0.048) 0.485 (0.048) 0.485 (0.048) 0.485 (0.048) 0.364 (0.037)

3 0.627 (0.061) 0.627 (0.061) 0.627 (0.061) 0.627 (0.061) 0.69 (0.046)

4 0.498 (0.051) 0.498 (0.051) 0.498 (0.051) 0.498 (0.051) 0.456 (0.034)

ψr 1 1* 1* 1* 1* 1.022 (0.025)

2 1.317 (0.063) 1.317 (0.063) 1.317 (0.063) 1.317 (0.063) 0.824 (0.023)

3 1.443 (0.066) 1.443 (0.066) 1.443 (0.066) 1.443 (0.066) 1.043 (0.025)

4 1.418 (0.061) 1.418 (0.061) 1.418 (0.061) 1.418 (0.061) 0.641 (0.025)

*: This parameter is fixed for identification purposes.

Table 7: For rater 2 to 4: the correlations between the relative 
rater mean (M‘

r) and the relative rater standard deviation (SD‘
r) of 

the observed item ratings (Xpir), and the relative rater parameters 
from the hierarchical rater model (φ‘

HRM and ψ‘
HRM) and the rater 

parameters from the rater threshold model (φRTM and ψHRM) over 
items .

r M‘
r SD‘

r φ‘
HRM ψ‘

HRM φRTM ψHRM

2 M‘
r 1

SD‘
r 0.129 1

φ‘
HRM 0.972 0.257 1

ψ‘
HRM -0.287 -0.129 -0.216 1

φRTM 0.936 0.269 0.963 -0.143 1

ψHRM 0.497 0.609 0.585 -0.326 0.650 1

3 M‘
r 1

SD‘
r 0.146 1

φ‘
HRM 0.961 0.100 1

ψ‘
HRM -0.193 -0.363 -0.098 1

φRTM 0.853 0.001 0.891 -0.24 1

ψHRM 0.546 0.358 0.569 -0.521 0.760 1

4 M‘
r 1

SD‘
r -0.121 1

φ‘
HRM 0.964 -0.017 1

ψ‘
HRM 0.287 -0.159 0.438 1

φRTM 0.729 -0.171 0.648 -0.075 1

ψHRM 0.306 0.469 0.273 -0.311 0.640 1

Note. See the main text for an explanation about the relative 
statistics and parameters.
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correlation between M‘
ir and φRTM is about as large for rater 

2 (0.936), but somewhat smaller for rater 2 (0.853) and rater 
3 (0.729). The correlation between φ‘

HRM and φRTM is large 
for raters 2 and 3 (around 0.900), but somewhat smaller for 
rater 4 (0.648). Next, the correlation between SDir and ψ‘

HRM 

is small and negative (between -0.129 and -0.363) while 
the correlation between SDir and ψRTM is larger and positive 
(between 0.358 and 0.609). The correlation between ψ‘

HRM 
and ψRTM is also negative (between -0.311 and -0.521). Thus 
overall, it seems that both φ‘

HRM and φRTM capture marginal 
relative mean differences between raters well, with the 
hierarchical rater model being somewhat better, while the 
rater threshold model captures relative differences in the 
marginal standard deviation better. As we focused on the 
transformed parameters of the hierarchical rater model 
relative to rater 1, we also provide the correlations between 
the untransformed hierarchical rater parameters and Mir 
and Sir, see Table 8. As can be seen, the Sir now correlates 
positively with the rater scale parameter φir although this 
correlation is small for rater 1 and 3.

In conclusion, φir from the hierarchical rater model 
and from the rater threshold model can both be used 
to quantify relative differences between raters in the 

marginal means. The scale parameter ψir from the 
hierarchical rater model is not suitable to quantify 
relative differences between raters in the marginal 
standard deviations while ψir from the rater threshold 
model performs better in this respect. Thus, the rater 
threshold should ideally be preferred if the aim is to 
quantify relative differences between raters. However, if 
the aim is to quantify differences between items within 
a rater, the hierarchical rater model is better suitable as 
for the rater threshold model, only relative differences 
between raters are quantified.

7  Discussion
In this paper we presented a method to infer student 
proficiency from items rated by multiple raters. As we 
relied on WLS estimation, we argued that our approach 
is suitable for large scale educational settings where 
multiple latent variables are needed to account for 
violations of local independence. Our argument is mainly 
a pragmatic one. There may be good reasons to choose the 
hierarchical rater model or a Bayesian approach over the 
present approach. For instance, contrary to the Bayesian 
hierarchical rater model by Patz et al. (2002), our approach 
is sensitive to small sample sizes. That is, for decreasing 
sample sizes, parameter estimates in the present model 
will become biased or even infeasible. In such cases, a 
Bayesian approach like the hierarchical rater model is 
desired. In addition, there may be substantive/conceptual 
reasons to choose for the hierarchical rater model due to 
the categorical nature of the ideal scores in this model. 
For instance, as argued by Mariano & Junker (2007), if the 
common item effects are treated as continuous variables, 
these cannot be interpreted as “ideal scores” because the 
scale differs from those of the observed ratings. 

Despite sample size considerations, there are two more 
trade-offs associated with our approach (see also Muthén, 
Muthén, & Asparouhov, 2015). First, our approach is more 
sensitive to the number of variables in the analysis as 
compared to MCMC or MML. That is, as the estimation of 
our model is based on the asymptotic covariance matrix 
of the polychoric means and correlations, it becomes 
more and more challenging to estimate the full matrix if 
there are both many raters and many items. However, as 
in practice the number of raters is commonly limited, the 
present approach will be suitable in many cases. Second, 
contrary to MML and MCMC approaches, our approach 
is a limited information approach which only uses the 
information from the first two polychoric moments in 
the data. However, the effects of neglecting higher-

Table 8: For each rater, the correlations between the rater mean (Mr)  

and the rater standard deviation (SDr) of the observed item ratings 
(Xpir), and the rater parameters φir and ψir from the hierarchical rater 
model (HRM).

r Mr SDr φHRM ψHRM

1 Mr 1

SDr -0.477 1

φHRM 0.716 -0.180 1

ψHRM -0.119 0.134 -0.305 1

2 Mr 1

SDr -0.634 1

φHRM 0.634 -0.419 1

ψHRM -0.652 0.583 0.036 1

3 Mr 1

SDr -0.726 1

φHRM 0.604 -0.589 1

ψHRM -0.420 0.040 0.218 1

4 Mr 1

SDr -0.593 1

φHRM 0.415 -0.066 1

ψHRM -0.375 0.390 -0.121 1
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order moments is generally considered to be small (see 
Christoffersson, 1975). 

The main difference between the present approach 
and other approaches (e.g., Patz et al., 2002; Wilson & 
Hoskens, 2001) is that the rater effects are treated as effects 
on the thresholds at which an underlying continuum is 
categorized by the raters. We chose this approach both 
for pragmatic reasons (i.e., to be in the generalized linear 
latent variable modeling framework) and substantive 
reasons (i.e., to facilitate the psychological interpretation 
of the parameters using Thurstone’s law of categorical 
judgment, 1928). This choice implies that the rater effect is 
treated as a fixed effect. This different from, for instance, 
Snijders and Bosker (1999, Chapter 11) and Wang et al. 
(2014). The question whether the rater effect is a random 
or a fixed effect is probably an empirical one. If the raters 
are truly selected randomly from a larger pool of raters, 
it might be best to account for this source of variation. 
However, we think that in practice, raters are selected 
according to specific criteria (e.g., availability, rating skill, 
acquaintance with the topic to be rated, etc.) such that the 
assumption of fixed rater effects is defendable.
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