11,549 research outputs found

    Observation of energy spectrum of electron albedo in low latitude region at Hyderabad, India

    Get PDF
    The preliminary results are presented of the measurement of the energy spectrum of low energy (5-24 MeV) albedo electrons, moving upward as well as downwards, at about 37 km (-4 mb) altitude, over Hyderabad, India, in low latitude region. The flux and energy spectrum was observed by a bi-directional, multidetector charged particle telescope which was flown in a high altitude balloon on 8th December 1984. Results based on a quick look data acquisition and analysis system are presented here

    A bi-directional charged particle telescope to observe flux, energy spectrum and angular distribution of relativistic and non-relativistic particles

    Get PDF
    A Charged Particle Telescope (CPT) was designed, fabricated and calibrated to make the following observations: (1) discrimination between various singly charged particles, e.g., electrons, muons and protons, in about 5 to 100 MeV energy range; (2) measurement of the flux and the energy of the charged particles incident to the telescope from two opposite directions and stopping in the telescope, thus obtaining flux and energy spectrum of downward and upward moving charged particles; and (3) measurement of the broad angular distribution of selected particles as a function of azimuthal angle. This telescope can be used to study low energy electron, muon and proton energy spectra. The experiment was flown in a high altitude balloon from Hyderabad, India, in December 1984. This same equipment is also useful in ground level electron, muon spectrum study

    Efficient absolute aspect determination of a balloon borne far infrared telescope using a solid state optical photometer

    Get PDF
    The observational and operational efficiency of the TIFR 1 meter balloon borne far infrared telescope has been improved by incorporating a multielement solid state optical photometer (SSOP) at the Cassegrain focus of the telescope. The SSOP is based on a 1-D linear photo diode array (PDA). The online and offline processing schemes of the PDA signals which have been developed, lead to improvement in the determination of absolute telescope aspect (\sim 0\farcm8), which is very crucial for carrying out the observations as well as offline analysis. The SSOP and its performance during a recent balloon flight are presented here.Comment: To appear in the February 2000 issue of the PAS

    Star formation activity in the southern Galactic HII region G351.63-1.25

    Full text link
    The southern Galactic high mass star-forming region, G351.6-1.3, is a HII region-molecular cloud complex with a luminosity of 2.0 x 10^5 L_sun, located at a distance of 2.4 kpc. In this paper, we focus on the investigation of the associated HII region, embedded cluster and the interstellar medium in the vicinity of G351.6-1.3. We address the identification of exciting source(s) as well as the census of stellar populations. The ionised gas distribution has been mapped using the Giant Metrewave Radio Telescope (GMRT), India at three continuum frequencies: 1280, 610 and 325 MHz. The HII region shows an elongated morphology and the 1280 MHz map comprises six resolved high density regions encompassed by diffuse emission spanning 1.4 pc x 1.0 pc. The zero age main-sequence (ZAMS) spectral type of the brightest radio core is O7.5. We have carried out near-infrared observations in the JHKs bands using the SIRIUS instrument on the 1.4 m Infrared Survey Facility (IRSF) telescope. The near-infrared images reveal the presence of a cluster embedded in nebulous fan-shaped emission. The log-normal slope of the K-band luminosity function of the embedded cluster is found to be 0.27 +- 0.03 and the fraction of the near-infrared excess stars is estimated to be 43%. These indicate that the age of the cluster is consistent with 1 Myr. The champagne flow model from a flat, thin molecular cloud is used to explain the morphology of radio emission with respect to the millimetre cloud and infrared brightness.Comment: 18 pages, 8 figures, To be published in MNRA

    Calculation of renormalized viscosity and resistivity in magnetohydrodynamic turbulence

    Full text link
    A self-consistent renormalization (RG) scheme has been applied to nonhelical magnetohydrodynamic turbulence with normalized cross helicity σc=0\sigma_c =0 and σc1\sigma_c \to 1. Kolmogorov's 5/3 powerlaw is assumed in order to compute the renormalized parameters. It has been shown that the RG fixed point is stable for ddc2.2d \ge d_c \approx 2.2. The renormalized viscosity ν\nu^* and resistivity η\eta^* have been calculated, and they are found to be positive for all parameter regimes. For σc=0\sigma_c=0 and large Alfv\'{e}n ratio (ratio of kinetic and magnetic energies) rAr_A, ν=0.36\nu^*=0.36 and η=0.85\eta^*=0.85. As rAr_A is decreased, ν\nu^* increases and η\eta^* decreases, untill rA0.25r_A \approx 0.25 where both ν\nu^* and η\eta^* are approximately zero. For large dd, both ν\nu^* and η\eta^* vary as d1/2d^{-1/2}. The renormalized parameters for the case σc1\sigma_c \to 1 are also reported.Comment: 19 pages REVTEX, 3 ps files (Phys. Plasmas, v8, 3945, 2001

    Algebraic Aspects of Abelian Sandpile Models

    Get PDF
    The abelian sandpile models feature a finite abelian group G generated by the operators corresponding to particle addition at various sites. We study the canonical decomposition of G as a product of cyclic groups G = Z_{d_1} X Z_{d_2} X Z_{d_3}...X Z_{d_g}, where g is the least number of generators of G, and d_i is a multiple of d_{i+1}. The structure of G is determined in terms of toppling matrix. We construct scalar functions, linear in height variables of the pile, that are invariant toppling at any site. These invariants provide convenient coordinates to label the recurrent configurations of the sandpile. For an L X L square lattice, we show that g = L. In this case, we observe that the system has nontrivial symmetries coming from the action of the cyclotomic Galois group of the (2L+2)th roots of unity which operates on the set of eigenvalues of the toppling matrix. These eigenvalues are algebraic integers, whose product is the order |G|. With the help of this Galois group, we obtain an explicit factorizaration of |G|. We also use it to define other simpler, though under-complete, sets of toppling invariants.Comment: 39 pages, TIFR/TH/94-3

    Infrared emission from interstellar dust cloud with two embedded sources: IRAS 19181+1349

    Get PDF
    Mid and far infrared maps of many Galactic star forming regions show multiple peaks in close proximity, implying more than one embedded energy sources. With the aim of understanding such interstellar clouds better, the present study models the case of two embedded sources. A radiative transfer scheme has been developed to deal with an uniform density dust cloud in a cylindrical geometry, which includes isotropic scattering in addition to the emission and absorption processes. This scheme has been applied to the Galactic star forming region associated with IRAS 19181+1349, which shows observational evidence for two embedded energy sources. Two independent modelling approaches have been adopted, viz., to fit the observed spectral energy distribution (SED) best; or to fit the various radial profiles best, as a function of wavelength. Both the models imply remarkably similar physical parameters.Comment: 17 pages, 6 Figures, uses epsf.sty. To appear in Journal of Astronophysics & Astronom

    Energy fluxes in helical magnetohydrodynamics and dynamo action

    Full text link
    Renormalized viscosity, renormalized resistivity, and various energy fluxes are calculated for helical magnetohydrodynamics using perturbative field theory. The calculation is to first-order in perturbation. Kinetic and magnetic helicities do not affect the renormalized parameters, but they induce an inverse cascade of magnetic energy. The sources for the the large-scale magnetic field have been shown to be (1) energy flux from large-scale velocity field to large-scale magnetic field arising due to nonhelical interactions, and (2) inverse energy flux of magnetic energy caused by helical interactions. Based on our flux results, a premitive model for galactic dynamo has been constructed. Our calculations yields dynamo time-scale for a typical galaxy to be of the order of 10810^8 years. Our field-theoretic calculations also reveal that the flux of magnetic helicity is backward, consistent with the earlier observations based on absolute equilibrium theory.Comment: REVTEX4; A factor of 2 corrected in helicit
    corecore