3,733 research outputs found

    Description of Drip-Line Nuclei within Relativistic Mean-Field Plus BCS Approach

    Full text link
    Recently it has been demonstrated, considering Ni and Ca isotopes as prototypes, that the relativistic mean-field plus BCS (RMF+BCS) approach wherein the single particle continuum corresponding to the RMF is replaced by a set of discrete positive energy states for the calculation of pairing energy provides a good approximation to the full relativistic Hartree-Bogoliubov (RHB) description of the ground state properties of the drip-line neutron rich nuclei. The applicability of RMF+BCS is essentially due to the fact that the main contribution to the pairing correlations is provided by the low-lying resonant states. General validity of this approach is demonstrated by the detailed calculations for the ground state properties of the chains of isotopes of O, Ca, Ni, Zr, Sn and Pb nuclei. The TMA and NL-SH force parameter sets have been used for the effective mean-field Lagrangian. Comprehensive results for the two neutron separation energy, rms radii, single particle pairing gaps and pairing energies etc. are presented. The Ca isotopes are found to exhibit distinct features near the neutron drip line whereby it is found that further addition of neutrons causes a rapid increase in the neutron rms radius with almost no increase in the binding energy, indicating the occurrence of halos. A comparison of these results with the available experimental data and with the recent continuum relativistic Hartree-Bogoliubov (RCHB) calculations amply demonstrates the validity and usefulness of this fast RMF+BCS approach.Comment: 59 pages, 40 figure

    Effect of different modes of pollination on quantitative and qualitative parameters of Egyptian Clover, Trifolium alexandrinum L.

    Get PDF
    The effect of different modes of pollination on quantitative and qualitative parameters of Egyptian clover, Trifolium alexandrinum L. was studied at Forage Section, Department of Genetics and Plant Breeding, CCS, Haryana Agricultural University, Hisar during 2012 and 2013. Maximum seed setting (81.5%) was recorded in A. mellifera pollination with an 8 frame colony (BP-8F) followed by 4 frame colony (BP-4F) (75.1%), open pollination (OP) (73.8%) and 2 frame colony (BP-2F) (71.5%). Maximum seed yield (2662.3 seeds) was observed in treatment BP-8F followed by BP-4F (2373.8), OP (2316.3) and BP-2F (2235.5). Still lower yield of 2103.0 seeds was found in hand pollination (HP) treatment that was significantly higher than the without insect pollination (WIP) treatment (1114.2). Minimum 1000-seed weight was observed in WIP (2.64 g). The seed weight of BP-4F (3.30), HP (3.20), BP-2F (3.17) and OP (3.03), the heaviest seeds were recorded in BP-8F (3.62 g/1000 grains) and it was at par with the treatment BP-4F (3.30 g). Highest seed germination per cent was recorded in BP-8F (94.7) followed by OP (90.7%). Lowest germination was found in WIP (84.7%). Though some work has been done on this aspect in India but comprehensive pollination studies has not been worked out

    Soft elasticity in biaxial smectic and smectic-C elastomers

    Full text link
    Ideal (monodomain) smectic-AA elastomers crosslinked in the smectic-AA phase are simply uniaxial rubbers, provided deformations are small. From these materials smectic-CC elastomers are produced by a cooling through the smectic-AA to smectic-CC phase transition. At least in principle, biaxial smectic elastomers could also be produced via cooling from the smectic-AA to a biaxial smectic phase. These phase transitions, respectively from DhD_{\infty h} to C2hC_{2h} and from DhD_{\infty h} to D2hD_{2h} symmetry, spontaneously break the rotational symmetry in the smectic planes. We study the above transitions and the elasticity of the smectic-CC and biaxial phases in three different but related models: Landau-like phenomenological models as functions of the Cauchy--Saint-Laurent strain tensor for both the biaxial and the smectic-CC phases and a detailed model, including contributions from the elastic network, smectic layer compression, and smectic-CC tilt for the smectic-CC phase as a function of both strain and the cc-director. We show that the emergent phases exhibit soft elasticity characterized by the vanishing of certain elastic moduli. We analyze in some detail the role of spontaneous symmetry breaking as the origin of soft elasticity and we discuss different manifestations of softness like the absence of restoring forces under certain shears and extensional strains.Comment: 26 pages, 6 figure

    Innovation platforms: experiences with their institutional embedding in agricultural research for development

    Get PDF
    Innovation Platforms (IPs) are seen as a promising vehicle to foster a paradigm shift in agricultural research for development (AR4D). By facilitating interaction, negotiation and collective action between farmers, researchers and other stakeholders, IPs can contribute to more integrated, systemic innovation that is essential for achieving agricultural development impacts. However, successful implementation of IPs requires institutional change within AR4D establishments. The objective of this paper is to reflect on the implementation and institutionalisation of IPs in present AR4D programmes. We use experiences from sub-Saharan Africa to demonstrate how the adoption and adaptation of IPs creates both opportunities and challenges that influence platform performance and impact. Niche-regime theory is used to understand challenges, and anticipate on how to deal with them. A key concern is whether IPs in AR4D challenge or reinforce existing technology-oriented agricultural innovation paradigms. For example, stakeholder representation, facilitation and institutional embedding determine to a large extent whether the IP can strengthen systemic capacity to innovate that can lead to real paradigm change, or are merely ‘old wine in new bottles’ and a continuation of ‘business as usual’. Institutional embedding of IPs and – more broadly – the transition from technology-oriented to system-oriented AR4D approaches requires structural changes in organisational mandates, incentives, procedures and funding, as well as investments in exchange of experiences, learning and capacity development

    Origin of magnetic moments and presence of a resonating valence bond state in Ba2_2YIrO6_6

    Get PDF
    While it was speculated that 5d4d^4 systems would possess non-magnetic JJ~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba2_2YIrO6_6, which in spite of having a perfectly cubic structure with largely separated Ir5+^{5+} (d4d^4) ions, has consistently shown presence of weak magnetic moments. Moreover, we clearly show from Muon Spin Relaxation (μ\muSR) measurements that a change in the magnetic environment of the implanted muons in Ba2_2YIrO6_6 occurs as temperature is lowered below 10~K. This observation becomes counterintuitive, as the estimated value of SOC obtained by fitting the RIXS spectrum of Ba2_2YIrO6_6 with an atomic jjj-j model is found to be as high as 0.39~eV, meaning that the system within this model is neither expected to possess moments nor exhibit temperature dependent magnetic response. Therefore we argue that the atomic jjj-j coupling description is not sufficient to explain the ground state of such systems, where despite having strong SOC, presence of hopping triggers delocalisation of holes, resulting in spontaneous generation of magnetic moments. Our theoretical calculations further indicate that these moments favour formation of spin-orbital singlets in the case of Ba2_2YIrO6_6, which is manifested in μ\muSR experiments measured down to 60~mK.Comment: 20 Pages, 7 Figure

    Growth of carbon nanotubes on quasicrystalline alloys

    Full text link
    We report on the synthesis of carbon nanotubes on quasicrystalline alloys. Aligned multiwalled carbon nanotubes (MWNTs) on the conducting faces of decagonal quasicrystals were synthesized using floating catalyst chemical vapor deposition. The alignment of the nanotubes was found perpendicular to the decagonal faces of the quasicrystals. A comparison between the growth and tube quality has also been made between tubes grown on various quasicrystalline and SiO2 substrates. While a significant MWNT growth was observed on decagonal quasicrystalline substrate, there was no significant growth observed on icosahedral quasicrystalline substrate. Raman spectroscopy and high resolution transmission electron microscopy (HRTEM) results show high crystalline nature of the nanotubes. Presence of continuous iron filled core in the nanotubes grown on these substrates was also observed, which is typically not seen in MWNTs grown using similar process on silicon and/or silicon dioxide substrates. The study has important implications for understanding the growth mechanism of MWNTs on conducting substrates which have potential applications as heat sinks
    corecore