4,316 research outputs found
Preliminary results of noble metal thermocouple research program, 1000 - 2000 C
Noble metal thermocouple research involving combustion gase
Report of conference evaluation committee
A general classification is made of a number of approaches used for the prediction of turbulent shear flows. The sensitivity of these prediction methods to parameter values and initial data are discussed in terms of variable density, pressure fluctuation, gradient diffusion, low Reynolds number, and influence of geometry
Universality in Systems with Power-Law Memory and Fractional Dynamics
There are a few different ways to extend regular nonlinear dynamical systems
by introducing power-law memory or considering fractional
differential/difference equations instead of integer ones. This extension
allows the introduction of families of nonlinear dynamical systems converging
to regular systems in the case of an integer power-law memory or an integer
order of derivatives/differences. The examples considered in this review
include the logistic family of maps (converging in the case of the first order
difference to the regular logistic map), the universal family of maps, and the
standard family of maps (the latter two converging, in the case of the second
difference, to the regular universal and standard maps). Correspondingly, the
phenomenon of transition to chaos through a period doubling cascade of
bifurcations in regular nonlinear systems, known as "universality", can be
extended to fractional maps, which are maps with power-/asymptotically
power-law memory. The new features of universality, including cascades of
bifurcations on single trajectories, which appear in fractional (with memory)
nonlinear dynamical systems are the main subject of this review.Comment: 23 pages 7 Figures, to appear Oct 28 201
Probability of local bifurcation type from a fixed point: A random matrix perspective
Results regarding probable bifurcations from fixed points are presented in
the context of general dynamical systems (real, random matrices), time-delay
dynamical systems (companion matrices), and a set of mappings known for their
properties as universal approximators (neural networks). The eigenvalue spectra
is considered both numerically and analytically using previous work of Edelman
et. al. Based upon the numerical evidence, various conjectures are presented.
The conclusion is that in many circumstances, most bifurcations from fixed
points of large dynamical systems will be due to complex eigenvalues.
Nevertheless, surprising situations are presented for which the aforementioned
conclusion is not general, e.g. real random matrices with Gaussian elements
with a large positive mean and finite variance.Comment: 21 pages, 19 figure
From Random Matrices to Stochastic Operators
We propose that classical random matrix models are properly viewed as finite
difference schemes for stochastic differential operators. Three particular
stochastic operators commonly arise, each associated with a familiar class of
local eigenvalue behavior. The stochastic Airy operator displays soft edge
behavior, associated with the Airy kernel. The stochastic Bessel operator
displays hard edge behavior, associated with the Bessel kernel. The article
concludes with suggestions for a stochastic sine operator, which would display
bulk behavior, associated with the sine kernel.Comment: 41 pages, 5 figures. Submitted to Journal of Statistical Physics.
Changes in this revision: recomputed Monte Carlo simulations, added reference
[19], fit into margins, performed minor editin
The lowest eigenvalue of Jacobi random matrix ensembles and Painlev\'e VI
We present two complementary methods, each applicable in a different range,
to evaluate the distribution of the lowest eigenvalue of random matrices in a
Jacobi ensemble. The first method solves an associated Painleve VI nonlinear
differential equation numerically, with suitable initial conditions that we
determine. The second method proceeds via constructing the power-series
expansion of the Painleve VI function. Our results are applied in a forthcoming
paper in which we model the distribution of the first zero above the central
point of elliptic curve L-function families of finite conductor and of
conjecturally orthogonal symmetry.Comment: 30 pages, 2 figure
Affine Subspace Representation for Feature Description
This paper proposes a novel Affine Subspace Representation (ASR) descriptor
to deal with affine distortions induced by viewpoint changes. Unlike the
traditional local descriptors such as SIFT, ASR inherently encodes local
information of multi-view patches, making it robust to affine distortions while
maintaining a high discriminative ability. To this end, PCA is used to
represent affine-warped patches as PCA-patch vectors for its compactness and
efficiency. Then according to the subspace assumption, which implies that the
PCA-patch vectors of various affine-warped patches of the same keypoint can be
represented by a low-dimensional linear subspace, the ASR descriptor is
obtained by using a simple subspace-to-point mapping. Such a linear subspace
representation could accurately capture the underlying information of a
keypoint (local structure) under multiple views without sacrificing its
distinctiveness. To accelerate the computation of ASR descriptor, a fast
approximate algorithm is proposed by moving the most computational part (ie,
warp patch under various affine transformations) to an offline training stage.
Experimental results show that ASR is not only better than the state-of-the-art
descriptors under various image transformations, but also performs well without
a dedicated affine invariant detector when dealing with viewpoint changes.Comment: To Appear in the 2014 European Conference on Computer Visio
The Combinatorial World (of Auctions) According to GARP
Revealed preference techniques are used to test whether a data set is
compatible with rational behaviour. They are also incorporated as constraints
in mechanism design to encourage truthful behaviour in applications such as
combinatorial auctions. In the auction setting, we present an efficient
combinatorial algorithm to find a virtual valuation function with the optimal
(additive) rationality guarantee. Moreover, we show that there exists such a
valuation function that both is individually rational and is minimum (that is,
it is component-wise dominated by any other individually rational, virtual
valuation function that approximately fits the data). Similarly, given upper
bound constraints on the valuation function, we show how to fit the maximum
virtual valuation function with the optimal additive rationality guarantee. In
practice, revealed preference bidding constraints are very demanding. We
explain how approximate rationality can be used to create relaxed revealed
preference constraints in an auction. We then show how combinatorial methods
can be used to implement these relaxed constraints. Worst/best-case welfare
guarantees that result from the use of such mechanisms can be quantified via
the minimum/maximum virtual valuation function
Error analysis of free probability approximations to the density of states of disordered systems
Theoretical studies of localization, anomalous diffusion and ergodicity
breaking require solving the electronic structure of disordered systems. We use
free probability to approximate the ensemble- averaged density of states
without exact diagonalization. We present an error analysis that quantifies the
accuracy using a generalized moment expansion, allowing us to distinguish
between different approximations. We identify an approximation that is accurate
to the eighth moment across all noise strengths, and contrast this with the
perturbation theory and isotropic entanglement theory.Comment: 5 pages, 3 figures, submitted to Phys. Rev. Let
Smooth analysis of the condition number and the least singular value
Let \a be a complex random variable with mean zero and bounded variance.
Let be the random matrix of size whose entries are iid copies of
\a and be a fixed matrix of the same size. The goal of this paper is to
give a general estimate for the condition number and least singular value of
the matrix , generalizing an earlier result of Spielman and Teng for
the case when \a is gaussian.
Our investigation reveals an interesting fact that the "core" matrix does
play a role on tail bounds for the least singular value of . This
does not occur in Spielman-Teng studies when \a is gaussian.
Consequently, our general estimate involves the norm .
In the special case when is relatively small, this estimate is nearly
optimal and extends or refines existing results.Comment: 20 pages. An erratum to the published version has been adde
- …