4,597 research outputs found

    Aerodynamic configuration development of the highly maneuverable aircraft technology remotely piloted research vehicle

    Get PDF
    The aerodynamic development of the highly maneuverable aircraft technology remotely piloted research vehicle (HiMAT/RPRV) from the conceptual design to the final configuration is presented. The design integrates several advanced concepts to achieve a high degree of transonic maneuverability, and was keyed to sustained maneuverability goals while other fighter typical performance characteristics were maintained. When tests of the baseline configuration indicated deficiencies in the technology integration and design techniques, the vehicle was reconfigured to satisfy the subcritical and supersonic requirements. Drag-due-to-lift levels only 5 percent higher than the optimum were obtained for the wind tunnel model at a lift coefficient of 1 for Mach numbers of up to 0.8. The transonic drag rise was progressively lowered with the application of nonlinear potential flow analyses coupled with experimental data

    The method of Gaussian weighted trajectories. V. On the 1GB procedure for polyatomic processes

    Full text link
    In recent years, many chemical reactions have been studied by means of the quasi-classical trajectory (QCT) method within the Gaussian binning (GB) procedure. The latter consists in "quantizing" the final vibrational actions in Bohr spirit by putting strong emphasis on the trajectories reaching the products with vibrational actions close to integer values. A major drawback of this procedure is that if N is the number of product vibrational modes, the amount of trajectories necessary to converge the calculations is ~ 10^N larger than with the standard QCT method. Applying it to polyatomic processes is thus problematic. In a recent paper, however, Czako and Bowman propose to quantize the total vibrational energy instead of the vibrational actions [G. Czako and J. M. Bowman, J. Chem. Phys., 131, 244302 (2009)], a procedure called 1GB here. The calculations are then only ~ 10 times more time-consuming than with the standard QCT method, allowing thereby for considerable numerical saving. In this paper, we propose some theoretical arguments supporting the 1GB procedure and check its validity on model test cases as well as the prototype four-atom reaction OH+D_2 -> HOD+D

    Easing the transition of First Year Undergraduates Through an Immersive Induction Module

    Get PDF
    Entry into higher education (HE) is recognised as a challenging time for undergraduates as they negotiate the norms and practices of new academic communities and foster relationships with peers and academics. Given the significance of this time period, our University has piloted a new four-week module that immerses students in their discipline and provides them with the academic skills and networks to support them through this period and beyond. Here we report a comprehensive evaluation examining academic and student experience of this immersive module. We explore its impact on essential aspects of the transition experience e.g. social integration, academic literacies and the sense of preparation for HE. Whilst this new approach did have positive impacts on students’ sense of integration, questions were raised around the extent to which it matched or even raised expectations, and the extent to which this prepared students for the rest of their studies

    The quality of different types of child care at 10 and 18 months. A comparison between types and factors related to quality.

    Get PDF
    The quality of care offered in four different types of non-parental child care to 307 infants at 10 months old and 331 infants at 18 months old was compared and factors associated with higher quality were identified. Observed quality was lowest in nurseries at each age point, except that at 18 months they offered more learning activities. There were few differences in the observed quality of care by child-minders, grandparents and nannies, although grandparents had somewhat lower safety and health scores and offered children fewer activities. Cost was largely unrelated to quality of care except in child-minding, where higher cost was associated with higher quality. Observed ratios of children to adults had a significant impact on quality of nursery care; the more infants or toddlers each adult had to care for, the lower the quality of the care she gave them. Mothers' overall satisfaction with their child's care was positively associated with its quality for home-based care but not for nursery settings

    State-to-state rotational transitions in H2_2+H2_2 collisions at low temperatures

    Get PDF
    We present quantum mechanical close-coupling calculations of collisions between two hydrogen molecules over a wide range of energies, extending from the ultracold limit to the super-thermal region. The two most recently published potential energy surfaces for the H2_2-H2_2 complex, the so-called DJ (Diep and Johnson, 2000) and BMKP (Boothroyd et al., 2002) surfaces, are quantitatively evaluated and compared through the investigation of rotational transitions in H2_2+H2_2 collisions within rigid rotor approximation. The BMKP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the potential energy surface compared to previous calculations of H2_2-H2_2 interaction. We found significant differences in rotational excitation/de-excitation cross sections computed on the two surfaces in collisions between two para-H2_2 molecules. The discrepancy persists over a large range of energies from the ultracold regime to thermal energies and occurs for several low-lying initial rotational levels. Good agreement is found with experiment (Mat\'e et al., 2005) for the lowest rotational excitation process, but only with the use of the DJ potential. Rate coefficients computed with the BMKP potential are an order of magnitude smaller.Comment: Accepted by J. Chem. Phy

    Semiclassical Description of Wavepacket Revival

    Get PDF
    We test the ability of semiclassical theory to describe quantitatively the revival of quantum wavepackets --a long time phenomena-- in the one dimensional quartic oscillator (a Kerr type Hamiltonian). Two semiclassical theories are considered: time-dependent WKB and Van Vleck propagation. We show that both approaches describe with impressive accuracy the autocorrelation function and wavefunction up to times longer than the revival time. Moreover, in the Van Vleck approach, we can show analytically that the range of agreement extends to arbitrary long times.Comment: 10 pages, 6 figure

    Pulse-driven near-resonant quantum adiabatic dynamics: lifting of quasi-degeneracy

    Full text link
    We study the quantum dynamics of a two-level system driven by a pulse that starts near-resonant for small amplitudes, yielding nonadiabatic evolution, and induces an adiabatic evolution for larger amplitudes. This problem is analyzed in terms of lifting of degeneracy for rising amplitudes. It is solved exactly for the case of linear and exponential rising. Approximate solutions are given in the case of power law rising. This allows us to determine approximative formulas for the lineshape of resonant excitation by various forms of pulses such as truncated trig-pulses. We also analyze and explain the various superpositions of states that can be obtained by the Half Stark Chirped Rapid Adiabatic Passage (Half-SCRAP) process.Comment: 21 pages, 12 figure

    Time-Splitting Coupling of WaveDyn with OpenFOAM by Fidelity Limit Identified from a WEC in Extreme Waves

    Get PDF
    Survivability assessment is the complexity compromising Wave energy development. The present study develops a hybrid model aiming to reduce computational power while maintaining accuracy for survivability assessment of a Point-Absorber (PA) Wave Energy Converter (WEC) in extreme Wave Structure Interaction (WSI). This method couples the fast inviscid linear potential flow time-domain model WaveDyn (1.2, DNV-GL, Bristol, UK) with the fully nonlinear viscous Navier–Stokes Computational Fluid Dynamics (CFD) code OpenFOAM (4.2, OpenFOAM.org, London, UK). The coupling technique enables the simulation to change between codes, depending on an indicator relating to wave steepness identified as a function of the confidence in the linear model solution. During the CFD part of the simulation, the OpenFOAM solution is returned to WaveDyn via an additional load term, thus including viscous effects. Developments ensure a satisfactory initialisation of CFD simulation to be achieved from a ‘hot-start’ time, where the wave-field is developed and the device is in motion. The coupled model successfully overcomes identified inaccuracies in the WaveDyn code due to the inviscid assumption and the high computational cost of the OpenFOAM code. Experimental data of a PA response under extreme deterministic events (NewWave) are used to assess WaveDyn’s validity limit as a function of wave steepness, in order to validate CFD code and develop the coupling. The hybrid code demonstrates the applicability of WaveDyn validity limit and shows promising results for long irregular sea-state applications

    Statistical Mechanics for Unstable States in Gel'fand Triplets and Investigations of Parabolic Potential Barriers

    Full text link
    Free energies and other thermodynamical quantities are investigated in canonical and grand canonical ensembles of statistical mechanics involving unstable states which are described by the generalized eigenstates with complex energy eigenvalues in the conjugate space of Gel'fand triplet. The theory is applied to the systems containing parabolic potential barriers (PPB's). The entropy and energy productions from PPB systems are studied. An equilibrium for a chemical process described by reactions A+CB⇄AC+BA+CB\rightleftarrows AC+B is also discussed.Comment: 14 pages, AmS-LaTeX, no figur

    Space Charge Limited 2-d Electron Flow between Two Flat Electrodes in a Strong Magnetic Field

    Get PDF
    An approximate analytic solution is constructed for the 2-d space charge limited emission by a cathode surrounded by non emitting conducting ledges of width Lambda. An essentially exact solution (via conformal mapping) of the electrostatic problem in vacuum is matched to the solution of a linearized problem in the space charge region whose boundaries are sharp due to the presence of a strong magnetic field. The current density growth in a narrow interval near the edges of the cathode depends strongly on Lambda. We obtain an empirical formula for the total current as a function of Lambda which extends to more general cathode geometries.Comment: 4 pages, LaTex, e-mail addresses: [email protected], [email protected]
    • 

    corecore