291 research outputs found

    High-Resolution Spectroscopy from 3050 to 10000 A of the HDF-S QSO J2233-606 with UVES at the ESO VLT

    Get PDF
    We report on high-resolution observations (ℜ≃45000\Re \simeq 45000) of the Hubble Deep Field South QSO J2233-606 obtained with the VLT UV-Visual Echelle Spectrograph (UVES). We present spectral data for the wavelength region 3050<λ<100003050 < \lambda < 10000 \AA. The S/NS/N ratio of the final spectrum is about 50 per resolution element at 4000 \AA, 90 at 5000 \AA, 80 at 6000 \AA, 40 at 8000 \AA. Redshifts, column densities and Doppler widths of the absorption features have been determined with Voigt-profile fitting. A total of 621 lines have been measured. In particular 270 Ly-alpha lines, 41 Ly-beta and 24 systems containing metal lines have been identified. Together with other data in the literature, the present spectrum confirms that the evolution of the number density of Ly-alpha lines with log⁥N(\log N(\huno)>14) > 14 has an upturn at z∌1.4−1.6z \sim 1.4-1.6.Comment: 34 pages Latex, with 3 PostScript figures. Astronomical Journal, in press. A few revised upper limit

    Measuring the Cosmological Geometry from the Lyman Alpha Forest along Parallel Lines of Sight

    Get PDF
    We discuss the feasibility of measuring the cosmological metric using the redshift space correlation function of the Lya forest in multiple lines of sight, as a function of angular and velocity separation. The geometric parameter that is measured is f(z) = H(z) D(z)/c, where H(z) is the Hubble constant and D(z) the angular diameter distance at redshift z. The correlation function is computed in linear theory. We describe a method to measure it from observations with the Gaussianization procedure of Croft et al (1998) to map the Lya forest transmitted flux to an approximation of the linear density field. The effect of peculiar velocities on the shape of the recovered power spectrum is pointed out. We estimate the error in recovering the f(z) factor from observations due to the variance in the Lya absorbers. We show that ~ 20 pairs of quasars (separations < 3') are needed to distinguish a flat \Omega_0=1 universe from a universe with \Omega_0=0.2, \Omega_\Lambda=0.8. A second parameter that is obtained from the correlation function of the Lya forest is \beta \simeq \Omega(z)^{0.6}/b (affecting the magnitude of the peculiar velocities), where b is a linear theory bias of the Lya forest. The statistical error of f(z) is reduced if b can be determined independently from numerical simulations, reducing the number of quasar pairs needed for constraining cosmology to approximately six. On small scales, where the correlation function is higher, f(z) should be measurable with fewer quasars, but non-linear effects must then be taken into account. The anisotropy of the non-linear redshift space correlation function as a function of scale should also provide a precise quantitative test of the gravitational instability theory of the Lya forest.Comment: submitted to Ap

    Historical trade-offs of livestock’s environmental impacts

    Get PDF
    Human demand for animal products has risen markedly over the past 50 years with important environmental impacts. Dairy and cattle production have disproportionately contributed to greenhouse gas (GHG) emissions and land use, while crop demands of more intensive systems have increased fertilizer use and competition for available crop calories. At the same time, chicken and pig production has grown more rapidly than for ruminants, indicating a change in the environmental burden per animal calorie (EBC) with time. How EBCs have changed and to what extent resource use efficiency (RUE), the composition of animal production and the trade of feed have played a role in these changes have not been examined to date. We employ a calorie-based perspective, distinguishing animal calorie production between calories produced from feedcrop sources—directly competing with humans for available calories—and those from non-feed sources—plant biomass unavailable for direct human consumption. Combining this information with data on agricultural resource use, we calculate EBCs in terms of land, GHG emissions and nitrogen. We find that EBCs have changed substantially for land (−62%), GHGs (−46%) and nitrogen (+188%). Changes in RUE (e.g., selective breeding, increased grain-feeding) have been the primary contributor to these EBC trends, but shifts in the composition of livestock production were responsible for 12%–41% of the total EBC changes. In addition, the virtual trade of land for feed has more than tripled in the past 25 years with 77% of countries currently relying on virtual land imports to support domestic livestock production. Our findings indicate that important tradeoffs have occurred as a result of livestock intensification, with more efficient land use and emission rates exchanged for greater nitrogen use and increased competition between feed and food. This study provides an integrated evaluation of livestock's impact on food security and the environment

    Large-Scale Correlations in the Lyman-alpha Forest at z = 3-4

    Full text link
    We present a study of the spatial coherence of the intergalactic medium toward two pairs of high-redshift quasars with moderate angular separations observed with Keck/ESI, Q1422+2309A/Q1424+2255 (z_em = 3.63, theta = 39") and Q1439-0034A/B (z_em = 4.25, theta = 33"). The crosscorrelation of transmitted flux in the Lyman-alpha forest shows a 5-7 sigma peak at zero velocity lag for both pairs. This strongly suggests that at least some of the absorbing structures span the 230-300/h_70 proper kpc transverse separation between sightlines. We also statistically examine the similarity between paired spectra as a function of transmitted flux, a measure which may be useful for comparison with numerical simulations. In investigating the dependence of the correlation functions on spectral characteristics, we find that photon noise has little impact for S/N >~ 10 per resolution element. However, the agreement between the autocorrelation along the line sight and the crosscorrelation between sightlines, a potential test of cosmological geometry, depends significantly on instrumental resolution. Finally, we present an inventory of metal lines. These include a a pair of strong C IV systems at z ~ 3.4 appearing only toward Q1439B, and a Mg II + Fe II system present toward Q1439 A and B at z = 1.68.Comment: 33 pages, 13 figures, submitted to Ap

    Ecohydrology of groundwater-dependent ecosystems: a stochastic framework for plant transpiration

    Get PDF
    Groundwater-dependent ecosystems are found in areas with a shallow water table, where the groundwater plays a key role on the ecosystem functions. In these areas, the water table depth, the capillary fluxes, and the soil moisture content exert a major control on most ecohydrologic processes, such as infiltration, surface runoff, aquifer recharge, land-atmosphere feedbacks, vegetation dynamics, nutrient cycling, and pollutant transport. Understanding and modeling the soil water balance and its relationships with climate, soil, and vegetation is therefore a crucial aspect for geosciences such as hydrology and ecology. The ecohydrology of groundwater-dependent ecosystems can be described with a modeling framework based on a stochastic process-based water balance. The model is driven by a compound marked Poisson noise representing the rainfall events and, under some simplifying, yet realistic, assumptions, it includes rainfall infiltration, root water uptake, capillary flux, and subsurface flow to/from an external water body. The framework provides the long-term probability distribution of water table depth and of soil moisture vertical profiles, enabling a quantitative study of the local hydrology with a limited number of parameters. We here apply this framework to investigate plant transpiration and root water uptake. The probability distributions of water uptake are derived from those of the soil water content and are investigated for different scenarios of climate, soil, and vegetation. The results of this approach allow for interesting speculations about the groundwater contribution to root uptake, the soil water available for plant transpiration, and the optimal strategies of root growth and plant competition. This information is useful to assess the impact of climate changes, vegetation modification, and water management operation

    Ecohydrology of groundwater-dependent ecosystems: a stochastic framework for plant transpiration

    Get PDF
    Groundwater-dependent ecosystems are found in areas with a shallow water table, where the groundwater plays a key role on the ecosystem functions. In these areas, the water table depth, the capillary fluxes, and the soil moisture content exert a major control on most ecohydrologic processes, such as infiltration, surface runoff, aquifer recharge, land-atmosphere feedbacks, vegetation dynamics, nutrient cycling, and pollutant transport. Understanding and modeling the soil water balance and its relationships with climate, soil, and vegetation is therefore a crucial aspect for geosciences such as hydrology and ecology. The ecohydrology of groundwater-dependent ecosystems can be described with a modeling framework based on a stochastic process-based water balance. The model is driven by a compound marked Poisson noise representing the rainfall events and, under some simplifying, yet realistic, assumptions, it includes rainfall infiltration, root water uptake, capillary flux, and subsurface flow to/from an external water body. The framework provides the long-term probability distribution of water table depth and of soil moisture vertical profiles, enabling a quantitative study of the local hydrology with a limited number of parameters. We here apply this framework to investigate plant transpiration and root water uptake. The probability distributions of water uptake are derived from those of the soil water content and are investigated for different scenarios of climate, soil, and vegetation. The results of this approach allow for interesting speculations about the groundwater contribution to root uptake, the soil water available for plant transpiration, and the optimal strategies of root growth and plant competition. This information is useful to assess the impact of climate changes, vegetation modification, and water management operation

    Photometric redshifts and selection of high redshift galaxies in the NTT and Hubble Deep Fields

    Get PDF
    We present and compare in this paper new photometric redshift catalogs of the galaxies in three public fields: the NTT Deep Field, the HDF-N and the HDF-S. Photometric redshifts have been obtained for thewhole sample, by adopting a χ2\chi^2 minimization technique on a spectral library drawn from the Bruzual and Charlot synthesis models, with the addition of dust and intergalactic absorption. The accuracy, determined from 125 galaxies with known spectroscopic redshifts, is σz∌0.08(0.3)\sigma_z\sim 0.08 (0.3) in the redshift intervals z=0−1.5(1.5−3.5)z=0-1.5 (1.5-3.5). The global redshift distribution of I-selected galaxies shows a distinct peak at intermediate redshifts, z~0.6 at I_{AB}<26 and z~0.8 at I_{AB}<27.5 followed by a tail extending to z~6. We also present for the first time the redshift distribution of the total IR-selected sample to faint limits (Ks≀21Ks \leq 21 and J≀22J\leq22). It is found that the number density of galaxies at 1.25<z<1.5 is ~ 0.1 /arcmin^22 at J<=21 and ~1./arcmin^2} at J<22, and drops to 0.3/arcmin^2 (at J<22) at 1.5<z<2. The HDFs data sets are used to compare the different results from color selection criteria and photometric redshifts in detecting galaxies in the redshift range 3.5<z<4.5 Photometric redshifts predict a number of high z candidates in both the HDF-N and HDF-S that is nearly 2 times larger than color selection criteria, and it is shown that this is primarily due to the inclusion of dusty models that were discarded in the original color selection criteria by Madau et al 1998. In several cases, the selection of these objects is made possible by the constraints from the IR bands. Finally, it is shown that galactic M stars may mimic z>5 candidates in the HDF filter set and that the 4 brightest candidates at z>5z>5 in the HDF-S are indeed most likely M stars. (ABRIDGED)Comment: Version accepted on July, 20, 2000. To appear on Astronomical Journal, Nov 2000. The data and photometric redshift catalogs presented here are available on line at http://www.mporzio.astro.it/HIGH

    What Produced the Ultraluminous Supernova Remnant in NGC 6946?

    Get PDF
    The ultraluminous supernova remnant (SNR) in NGC 6946 is the brightest known SNR in X-rays, ~1000 times brighter than Cas A. To probe the nature of this remnant and its progenitor, we have obtained high-dispersion optical echelle spectra. The echelle spectra detect H-alpha, [N II], and [O III] lines, and resolve these lines into a narrow (FWHM ~20--40 km/s) component from un-shocked material and a broad (FWHM ~250 km/s) component from shocked material. Both narrow and broad components have unusually high [N II]/H-alpha ratios, ~1. Using the echelle observation, archival HST images, and archival ROSAT X-ray observations, we conclude that the SNR was produced by a normal supernova, whose progenitor was a massive star, either a WN star or a luminous blue variable. The high luminosity of the remnant is caused by the supernova ejecta expanding into a dense, nitrogen-rich circumstellar nebula created by the progenitor.Comment: 20 pages, 5 figures. To be published in The Astronomical Journal, March 200

    Toward a Measurement of the Cosmological Geometry at z~2: Predicting Lyman-alpha Forest Correlation in Three Dimensions, and the Potential of Future Data Sets

    Full text link
    The correlation between Lyman-alpha absorption in the spectra of quasar pairs can be used to measure the transverse distance scale at z~2, which is sensitive to the cosmological constant (Omega_Lambda) or other forms of vacuum energy. Using Hydro-PM simulations, I compute the three-dimensional power spectrum of the Lyman-alpha forest flux, P_F(k,mu), from which the redshift-space anisotropy of the correlation can be obtained. I find that box size ~40 Mpc/h and resolution ~40 Kpc/h are necessary for convergence of the calculations to <5% on all relevant scales, although somewhat poorer resolution can be used for large scales. I compute directly the linear theory bias parameters of the Lyman-alpha forest, potentially allowing simulation results to be extended to arbitrarily large scales. I investigate the dependence of P_F(k,mu) on the primordial power spectrum, the temperature-density relation of the gas, and the mean flux decrement, finding that the redshift-space anisotropy is relatively insensitive to these parameters. A table of results is provided for different parameter variations. I investigate the constraint that can be obtained on Omega_Lambda using quasars from a large survey. Assuming 13 (theta/1')^2 pairs at separation <theta, and including separations <10', a measurement to <5% can be made if simulations can predict the redshift-space anisotropy with <5% accuracy, or to <10% if the anisotropy must be measured from the data. The Sloan Digital Sky Survey (SDSS) will obtain spectra for a factor ~5 fewer pairs than this, so followup observations of fainter pair candidates will be necessary. I discuss the requirements on spectral resolution and signal-to-noise ratio (SDSS-quality spectra are sufficient).Comment: Submitted to ApJ, 47 page

    UVES observations of QSO 0000-2620: oxygen and zinc abundances in the Damped Ly-alpha galaxy at z_abs=3.3901

    Full text link
    Observations of the QSO 0000-2620 with UVES spectrograph at the 8.2m ESO KUEYEN telescope are used for abundance analysis of the damped Ly-alpha system at z_{abs}=3.3901. Several Oxygen lines are identified in the Ly_alpha forest and a measure for the oxygen abundance is obtained at [O/H]=-1.85 +/- 0.1 by means of the unsaturated OI 925 A and OI 950 A lines. This represents the most accurate O measurement in a damped Ly_alpha galaxy so far. We have also detected ZnII 2026 A and CrII 2056, 2062 A redshifted at about 8900 A and found abundances [Zn/H] = -2.07 +/- 0.1 and [Cr/H]=-1.99 +/- 0.1. Furthermore, previous measurements of Fe, Si, Ni and N have been refined yielding [Fe/H]=-2.04 +/- 0.1, [Si/H]=-1.90 +/- 0.1, [Ni/H]=-2.27 +/- 0.1, and [N/H]=-2.68 +/- 0.1. The abundance of the non-refractory element zinc is the lowest among the damped Ly-alpha systems showing that the associated intervening galaxy is indeed in the early stages of its chemical evolution. The fact that the Zn abundance is identical to that of the refractory elements Fe and Cr suggests that dust grains have not formed yet. In this Damped Ly-alpha system the observed [O,S,Si/Zn,Fe,Cr] ratios, in whatever combination are taken, are close to solar (i.e 0.1-0.2 dex) and do not show the [alpha-element/Fe] enhancement observed in Milky Way stars of comparable metallicity. The observed behavior supports a galaxy evolution model characterized by either episodic or low star formation rate rather than a Milky-Way-type evolutionary model.Comment: Accepted by Ap
    • 

    corecore