91 research outputs found

    High-Throughput Sequencing of mGluR Signaling Pathway Genes Reveals Enrichment of Rare Variants in Autism

    Get PDF
    Identification of common molecular pathways affected by genetic variation in autism is important for understanding disease pathogenesis and devising effective therapies. Here, we test the hypothesis that rare genetic variation in the metabotropic glutamate-receptor (mGluR) signaling pathway contributes to autism susceptibility. Single-nucleotide variants in genes encoding components of the mGluR signaling pathway were identified by high-throughput multiplex sequencing of pooled samples from 290 non-syndromic autism cases and 300 ethnically matched controls on two independent next-generation platforms. This analysis revealed significant enrichment of rare functional variants in the mGluR pathway in autism cases. Higher burdens of rare, potentially deleterious variants were identified in autism cases for three pathway genes previously implicated in syndromic autism spectrum disorder, TSC1, TSC2, and SHANK3, suggesting that genetic variation in these genes also contributes to risk for non-syndromic autism. In addition, our analysis identified HOMER1, which encodes a postsynaptic density-localized scaffolding protein that interacts with Shank3 to regulate mGluR activity, as a novel autism-risk gene. Rare, potentially deleterious HOMER1 variants identified uniquely in the autism population affected functionally important protein regions or regulatory sequences and co-segregated closely with autism among children of affected families. We also identified rare ASD-associated coding variants predicted to have damaging effects on components of the Ras/MAPK cascade. Collectively, these findings suggest that altered signaling downstream of mGluRs contributes to the pathogenesis of non-syndromic autism

    Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders

    Get PDF
    Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease

    A Genetic Basis of Susceptibility to Acute Pyelonephritis

    Get PDF
    For unknown reasons, urinary tract infections (UTIs) are clustered in certain individuals. Here we propose a novel, genetically determined cause of susceptibility to acute pyelonephritis, which is the most severe form of UTI. The IL-8 receptor, CXCR1, was identified as a candidate gene when mIL-8Rh mutant mice developed acute pyelonephritis (APN) with severe tissue damage.We have obtained CXCR1 sequences from two, highly selected APN prone patient groups, and detected three unique mutations and two known polymorphisms with a genotype frequency of 23% and 25% compared to 7% in controls (p<0.001 and p<0.0001, respectively). When reflux was excluded, 54% of the patients had CXCR1 sequence variants. The UTI prone children expressed less CXCR1 protein than the pediatric controls (p<0.0001) and two sequence variants were shown to impair transcription.The results identify a genetic innate immune deficiency, with a strong link to APN and renal scarring

    Genetic Background Analysis of Protein C Deficiency Demonstrates a Recurrent Mutation Associated with Venous Thrombosis in Chinese Population

    Get PDF
    Background: Protein C (PC) is one of the most important physiological inhibitors of coagulation proteases. Hereditary PC deficiency causes a predisposition to venous thrombosis (VT). The genetic characteristics of PC deficiency in the Chinese population remain unknown. Methods: Thirty-four unrelated probands diagnosed with hereditary PC deficiency were investigated. PC activity and antigen levels were measured. Mutation analysis was performed by sequencing the PROC gene. In silico analyses, including PolyPhen-2, SIFT, multiple sequence alignment, splicing prediction, and protein molecular modeling were performed to predict the consequences of each variant identified. One recurrent mutation and its relative risk for thrombosis in relatives were analyzed in 11 families. The recurrent mutation was subsequently detected in a case (VT patients)-control study, and the adjusted odds ratio (OR) for VT risk was calculated by logistic regression analysis. Results: A total of 18 different mutations, including 12 novel variants, were identified. One common mutation, PROC c.565C.T (rs146922325:C.T), was found in 17 of the 34 probands. The family study showed that first-degree relatives bearing this variant had an 8.8-fold (95%CI = 1.1–71.6) increased risk of venous thrombosis. The case-control (1003 vs. 1031) study identified this mutation in 5.88 % patients and in 0.87 % controls, respectively. The mutant allele conferred a high predisposition to venous thrombosis (adjusted OR = 7.34, 95%CI = 3.61–14.94). The plasma PC activity and antigen levels i

    A Generic System for the Expression and Purification of Soluble and Stable Influenza Neuraminidase

    Get PDF
    The influenza surface glycoprotein neuraminidase (NA) is essential for the efficient spread of the virus. Antiviral drugs such as Tamiflu (oseltamivir) and Relenza (zanamivir) that inhibit NA enzyme activity have been shown to be effective in the treatment of influenza infections. The recent ‘swine flu’ pandemic and world-wide emergence of Tamiflu-resistant seasonal human influenza A(H1N1) H274Y have highlighted the need for the ongoing development of new anti-virals, efficient production of vaccine proteins and novel diagnostic tools. Each of these goals could benefit from the production of large quantities of highly pure and stable NA. This publication describes a generic expression system for NAs in a baculovirus Expression Vector System (BEVS) that is capable of expressing milligram amounts of recombinant NA. To construct NAs with increased stability, the natural influenza NA stalk was replaced by two different artificial tetramerization domains that drive the formation of catalytically active NA homotetramers: GCN4-pLI from yeast or the Tetrabrachion tetramerization domain from Staphylothermus marinus. Both recombinant NAs are secreted as FLAG-tagged proteins to allow for rapid and simple purification. The Tetrabrachion-based NA showed good solubility, increased stability and biochemical properties closer to the original viral NA than the GCN4-pLI based construct. The expressed quantities and high quality of the purified recombinant NA suggest that this expression system is capable of producing recombinant NA for a broad range of applications including high-throughput drug screening, protein crystallisation, or vaccine development

    Dicer1 Depletion in Male Germ Cells Leads to Infertility Due to Cumulative Meiotic and Spermiogenic Defects

    Get PDF
    Background: Spermatogenesis is a complex biological process that requires a highly specialized control of gene expression. In the past decade, small non-coding RNAs have emerged as critical regulators of gene expression both at the transcriptional and post-transcriptional level. DICER1, an RNAse III endonuclease, is essential for the biogenesis of several classes of small RNAs, including microRNAs (miRNAs) and endogenous small interfering RNAs (endo-siRNAs), but is also critical for the degradation of toxic transposable elements. In this study, we investigated to which extent DICER1 is required for germ cell development and the progress of spermatogenesis in mice.Principal Findings: We show that the selective ablation of Dicer1 at the early onset of male germ cell development leads to infertility, due to multiple cumulative defects at the meiotic and post-meiotic stages culminating with the absence of functional spermatozoa. Alterations were observed in the first spermatogenic wave and include delayed progression of spermatocytes to prophase I and increased apoptosis, resulting in a reduced number of round spermatids. The transition from round to mature spermatozoa was also severely affected, since the few spermatozoa formed in mutant animals were immobile and misshapen, exhibiting morphological defects of the head and flagellum. We also found evidence that the expression of transposable elements of the SINE family is up-regulated in Dicer1-depleted spermatocytes.Conclusions/Significance: Our findings indicate that DICER1 is dispensable for spermatogonial stem cell renewal and mitotic proliferation, but is required for germ cell differentiation through the meiotic and haploid phases of spermatogenesis

    Role of genetic polymorphisms in tumour angiogenesis

    Get PDF
    Angiogenesis plays a crucial role in the development, growth and spread of solid tumours. Pro- and anti-angiogenic factors are abnormally expressed in tumours, influencing tumour angiogenesis, growth and progression. Polymorphisms in genes encoding angiogenic factors or their receptors may alter protein expression and/or activity. This article reviews the literature to determine the possible role of angiogenesis-related polymorphisms in cancer. Further research studies in this potentially crucial area of tumour biology are proposed

    Association between single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) and self-reported responses to alcohol in American Indians

    Get PDF
    Abstract Background Variation in response to the hedonic and adverse effects of a substance is in part an inherited factor that may influence its use, abuse and dependence. The mu opioid receptor is the primary site of action for opiates and individuals with polymorphisms in this receptor appear to have variation in the CNS effects of opiates. Several studies have suggested that this receptor may also mediate some of the effects of non-opioid drugs, such as alcohol. The purpose of this study was to investigate associations between 13 single nucleotide polymorphisms in the mu opioid receptor gene (OPRM1) with self-reported responses to alcohol, an endophenotype associated with the development of alcohol dependence, in American Indians living on eight contiguous reservations. Methods Each participant gave a blood sample and completed a structured diagnostic interview. Additionally, response to alcohol was indexed using the expectation version of the subjective high assessment scale (SHAS-E). SNPs were genotyped in 251 participants and data analyses were conducted using SOLAR. Results The estimated heritability (h2) for the SHAS-E phenotypes ranged from 0.01 to 0.28. Endorsing the expectation of a more intense response on one or more of the following items from the SHAS-E: buzzed, clumsy, dizzy, drunk, effects, high, nausea, sleepy, talkative, terrible, and/or uncomfortable after imbibing 2–3 drinks was significantly associated with having at least one minor allele for at least one of 7 SNPs (p < 0.01) in the OPRM1 receptor gene. Conclusion These studies provide data to suggest that the minor allele, for most of the polymorphisms in the OPRM1 receptor gene investigated, was found to be associated with a more intense, and/or more adverse, response to alcohol, traits that are significantly correlated with lowered quantity of alcohol consumption and less susceptibility to dependence in this Indian population. These data further suggest that making conclusions on the role of the mu opiod receptor gene in the development of alcohol dependence may be limited if only one polymorphism in the gene is evaluated in isolation
    corecore